Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2015_6_1_a8, author = {F. S. Stonyakin}, title = {Applications of anticompact sets to analogs of {Denjoy--Young--Saks} and {Lebesgue} theorems}, journal = {Eurasian mathematical journal}, pages = {115--122}, publisher = {mathdoc}, volume = {6}, number = {1}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2015_6_1_a8/} }
TY - JOUR AU - F. S. Stonyakin TI - Applications of anticompact sets to analogs of Denjoy--Young--Saks and Lebesgue theorems JO - Eurasian mathematical journal PY - 2015 SP - 115 EP - 122 VL - 6 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/EMJ_2015_6_1_a8/ LA - en ID - EMJ_2015_6_1_a8 ER -
F. S. Stonyakin. Applications of anticompact sets to analogs of Denjoy--Young--Saks and Lebesgue theorems. Eurasian mathematical journal, Tome 6 (2015) no. 1, pp. 115-122. http://geodesic.mathdoc.fr/item/EMJ_2015_6_1_a8/
[1] A. L. Brudno, Theory of funtions of real variables, Nauka, M., 1971 (in Russian) | MR
[2] K. M. Garg, “A unified theory of bilateral derivates”, Real Analysis Exchange, 26:1 (2006), 81–122 | MR
[3] F. S. Stonyakin, “Analog of Denjoy–Young–Saks theorem about contingency for mappings into Frechet space and one its application in vector integral theory”, Trans. Inst. Appl. Math. Mech. Natl. Acad. Sci. Ukraine, 20 (2010), 168–176 (in Russian) | MR | Zbl
[4] E. Hille, R. S. Phillips, Functional analysis and semigroups, Lect. Notes in Math., 481, Springer Verlag, New York, 1975
[5] R. Edwards, Functional analysis. Theory and applications, Holt, Rinehart and Winston, New York–London, 1965 | MR | Zbl
[6] N. N. Vachaniya, V. I. Tarieladze, S. A. Chobanyan, Probabilistic distributions in Banach spaces, Nauka, M., 1985 (in Russian)
[7] V. M. Kadets, B. Shumyatskiy, R. Shvidkoy, L. Tseytlin, K. Zheltukhin, “Some remarks on vector-valued integration”, Math. Phys. Anal. Geom., 9 (2002), 48–65 | MR | Zbl
[8] S. J. Dilworth, M. Girardi, “Nowhere weak differentiability of the Pettis integral”, Ouaest. Math., 18:4 (1995), 365–380 | MR | Zbl
[9] F. S. Stonyakin, “On differentiability of indefinite Pettis integral on the upper bound”, Scientific Notes of National Tautida V. Vernadsky University, Ser. Phys. Math. Sci., 24:3 (2011), 98–109 (in Russian)
[10] F. S. Stonyakin, “Uhl's theorem analog on convexity of vector measure range”, Dynamical Systems, 3(31):3–4 (2013), 281–288 (in Russian)
[11] F. S. Stonyakin, “Analogs of Krein–Milman theorem for bounded convex sets in infinite-dimensional spaces”, Dynamical Systems, 4(32):3–4 (2014), 237–244 (in Russian)