Sturm comparison theorems for half-linear equations with a damping term
Eurasian mathematical journal, Tome 6 (2015) no. 1, pp. 85-95.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, first we establish a Picone-type inequality for a pair of half-linear equations with a damping term. Next we prove some Sturm-type comparison theorems via the Picone-type inequality.
@article{EMJ_2015_6_1_a6,
     author = {R. Oinarov and Kh. Ramazanova and A. Tiryaki},
     title = {Sturm comparison theorems for half-linear equations with a damping term},
     journal = {Eurasian mathematical journal},
     pages = {85--95},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2015_6_1_a6/}
}
TY  - JOUR
AU  - R. Oinarov
AU  - Kh. Ramazanova
AU  - A. Tiryaki
TI  - Sturm comparison theorems for half-linear equations with a damping term
JO  - Eurasian mathematical journal
PY  - 2015
SP  - 85
EP  - 95
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2015_6_1_a6/
LA  - en
ID  - EMJ_2015_6_1_a6
ER  - 
%0 Journal Article
%A R. Oinarov
%A Kh. Ramazanova
%A A. Tiryaki
%T Sturm comparison theorems for half-linear equations with a damping term
%J Eurasian mathematical journal
%D 2015
%P 85-95
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2015_6_1_a6/
%G en
%F EMJ_2015_6_1_a6
R. Oinarov; Kh. Ramazanova; A. Tiryaki. Sturm comparison theorems for half-linear equations with a damping term. Eurasian mathematical journal, Tome 6 (2015) no. 1, pp. 85-95. http://geodesic.mathdoc.fr/item/EMJ_2015_6_1_a6/

[1] S. Ahmad, A. C. Lazer, “A new generalization of the Sturm comparison theorem to self adjoint systems”, Proc. Amer. Math. Soc., 68 (1978), 185–188 | DOI | MR | Zbl

[2] S. Ahmad, “On Sturmian theory for second order systems”, Proc. Amer. Math. Soc., 87 (1983), 661–665 | DOI | MR | Zbl

[3] W. Allegretto, “Sturm type theorems for solutions of elliptic nonlinear problems”, Nonlinear Differ. Equ. Appl., 7 (2000), 309–321 | DOI | MR | Zbl

[4] W. Allegretto, Y. X. Huang, “A Picones identitiy for the $p$-Laplacian and applications”, Nonlinear Analysis T. M. A., 32 (1998), 819–830 | DOI | MR | Zbl

[5] W. Allegretto, “Sturm theorems for degenerate elliptic equations”, Proc. Amer. Math. Soc., 129 (2001), 3031–3035 | DOI | MR | Zbl

[6] O. Doslý, “The Picone identity for a class of partial differential equations”, Mathematica Bohemica, 127 (2002), 581–589 | MR | Zbl

[7] O. Doslý, P. Řehák, Half-linear differential equations, North-Holland Mathematics Studies, 202, Elsevier Science B. V., Amsterdam, 2005 | MR | Zbl

[8] S. Fisnarová, R. Marik, “Generalized Picone and Riccati inequalites for half-linear differential operators with arbitrary elliptic matrices”, Electronic J. Diff. Equations, 111 (2010), 1–13 | MR

[9] G. H. Hardy, J. E. Littlewood, G. Polya, Inequalities, Cambridge Univ. Press, 1988 | MR | Zbl

[10] J. Jaroš, T. Kusano, “A Picone type identity for second order half-linear differential equations”, Acta Math. Univ. Comenianae, LXVIII:1 (1999), 137–151 | MR | Zbl

[11] J. Jaroš, T. Kusano, N. Yoshida, “Forced superlinear oscillations via Picone's identity”, Acta Math. Univ. Comenianae, LXIX (2000), 107–113 | MR | Zbl

[12] J. Jaroš, T. Kusano, N. Yoshida, “Picone type inequalies for half linear elliptic equations and their applications”, Adv. Math. Sci. Appl., 12:2 (2002), 709–724 | MR | Zbl

[13] K. Kreith, Oscillation theory, Lecture Notes in Mathematics, 324, Springer-Verlag, 1973 | Zbl

[14] W. Leighton, “Comparison theorems for linear differential equations of second order”, Proc. Amer. Math. Soc., 13 (1962), 603–610 | DOI | MR | Zbl

[15] H. J. Li, C. C. Yeh, “Sturmian comparison theorem for half-linear second order differential equations”, Proc. Roy. Soc. Edinburgh, 125A (1995), 1193–1204 | MR | Zbl

[16] E. Muller-Pfeiffer, “Sturm comparison theorems for non-selfadjoint differential equations on non-compact intervals”, Math. Nachr., 159 (1992), 291–298 | DOI | MR | Zbl

[17] M. Picone, “Sui valori eccezionali di un parametro da cui dipende un equazione differenziale lineare ordinaria del second ordine”, Ann. Scuola Norm. Pisa, 11 (1909), 1–141 | MR

[18] C. Sturm, “Sur les equations differentielles linearies du second ordere”, J. Math. Pures. Appl., 1 (1836), 106–186

[19] C. A. Swanson, Comparison and oscillation theory of linear differential equations, Academic Press, New York, 1968 | MR | Zbl

[20] T. Tadie, “Oscillation criteria for semilinear elliptic equations with a damping term in $R^n$”, Electronic J. Diff. Equations, 51 (2010), 1–5 | MR

[21] A. Tiryaki, “Sturm–Picone type theorems for second-order nonlinear differential equations”, Electronic J. Diff. Equations, 2014:146 (2014), 1–11 | MR

[22] A. Tiryaki, “Sturm–Picone type theorems for second-order nonlinear elliptic differential equations”, Electronic J. Diff. Equations, 2014:214 (2014), 1–10 | MR

[23] J. Tyagi, V. Raghavendra, “A note on generalization of Sturm's comparison theorem”, Nonlinear Dyn. Syst. Theory, 8:2 (2008), 213–216 | MR | Zbl

[24] J. Tyagi, “Generalizations of Sturm–Picone theorem for second order nonlinear differential equations”, Taiwanese Journal of Mathematics, 17:1 (2013), 361–378 | MR | Zbl

[25] N. Yoshida, Oscillation theory of partial differential equations, World Scientific, 2008 | MR | Zbl

[26] N. Yoshida, “A Picone identity for half-linear elliptic equations and its applications to oscillation theory”, Nonlinear Anal., 71 (2009), 4935–4951 | DOI | MR | Zbl

[27] C. Zhang, S. Sun, “Sturm–Picone comparison theorem of second-order linear equationson time scales”, Adv. Diff. Eqs., 2009, 496135, 12 pp. | DOI | MR | Zbl