Bochkarev inequality for the Fourier transform of functions in the Lorentz spaces~$L_{2,r}(\mathbb{R})$
Eurasian mathematical journal, Tome 6 (2015) no. 1, pp. 76-84.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article we prove an analogue of Hardy–Littlewood–Stein inequality for the Fourier transform in Lorentz space $L_{2,r}(\mathbb{R})$.
@article{EMJ_2015_6_1_a5,
     author = {G. K. Mussabayeva and N. T. Tleukhanova},
     title = {Bochkarev inequality for the {Fourier} transform of functions in the {Lorentz} spaces~$L_{2,r}(\mathbb{R})$},
     journal = {Eurasian mathematical journal},
     pages = {76--84},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2015_6_1_a5/}
}
TY  - JOUR
AU  - G. K. Mussabayeva
AU  - N. T. Tleukhanova
TI  - Bochkarev inequality for the Fourier transform of functions in the Lorentz spaces~$L_{2,r}(\mathbb{R})$
JO  - Eurasian mathematical journal
PY  - 2015
SP  - 76
EP  - 84
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2015_6_1_a5/
LA  - en
ID  - EMJ_2015_6_1_a5
ER  - 
%0 Journal Article
%A G. K. Mussabayeva
%A N. T. Tleukhanova
%T Bochkarev inequality for the Fourier transform of functions in the Lorentz spaces~$L_{2,r}(\mathbb{R})$
%J Eurasian mathematical journal
%D 2015
%P 76-84
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2015_6_1_a5/
%G en
%F EMJ_2015_6_1_a5
G. K. Mussabayeva; N. T. Tleukhanova. Bochkarev inequality for the Fourier transform of functions in the Lorentz spaces~$L_{2,r}(\mathbb{R})$. Eurasian mathematical journal, Tome 6 (2015) no. 1, pp. 76-84. http://geodesic.mathdoc.fr/item/EMJ_2015_6_1_a5/

[1] J. Bergh, J. Lófstróm, Interpolation Spaces, New York, 1976, 210 pp.

[2] S. V. Bochkarev, “Hausdorff–Young–Riesz theorem in Lorentz spaces and multiplicative inequalities”, Proc. Steclov Inst. Math., 219 (1997), 96–107 | MR | Zbl

[3] A. N. Kopezhanova, E. D. Nursultanov, L.-E. Persson, “On inequalities for the Fourier transform of functions from Lorentz spaces”, Mathematical notes, 90:5 (2011), 785–788 | MR | Zbl

[4] E. D. Nursultanov, “Net spaces and the Fourier transform”, Dokl. Akad. Nauk, 361:5 (1998), 597–599 (in Russian) | MR | Zbl

[5] E. D. Nursultanov, T. U. Aubakirov, “Hardy–Littlewood theorem for Fourier series”, Mathematical notes, 73 (2003), 340–347 | MR | Zbl

[6] E. D. Nursultanov, “Interpolation properties of some anisotropic spaces and Hardy–Littlewood type inequalities”, East J. Approx., 4:2 (1998), 277–290 | MR | Zbl

[7] E. D. Nursultanov, “Application of interpolational methods to the study of properties of functions of several variables”, Mathematical Notes, 75:3 (2004), 341–351 | DOI | MR | Zbl

[8] M. Stein Elias, “Interpolation of linear operators”, Trans. Amer. Math. Soc., 83 (1956), 482–492 | DOI | MR | Zbl

[9] E. C. Titchmarsh, “A contribution to the theory of Fourier transforms”, Proc. London Math. Soc., 23:2 (1924), 279–289 | MR | Zbl

[10] Gostekhizdat, M.–L., 1948

[11] A. Zygmund, Trigonometrical series, v. I, II, 2nd ed., Cambridge Univ. Press, New York, 1959 ; Mir, M., 1965 | MR