Homotopy analysis method and homotopy Pad\'e approximants for~solving the Fornberg--Whitham equation
Eurasian mathematical journal, Tome 6 (2015) no. 1, pp. 65-75.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, the homotopy analysis method (HAM) is sharpened to solve the Fornberg–Whitham equation. Homotopy-Padé technique, and the use of proper initial gauss and auxiliary linear operator are employed to accelerate the convergence of approximations. Results demonstrate the power of the HAM equipped with these techniques in increasing the convergence rate and enlarging the region of convergence.
@article{EMJ_2015_6_1_a4,
     author = {H. R. Marasi and A. Pourmostafa Aqdam},
     title = {Homotopy analysis method and homotopy {Pad\'e} approximants for~solving the {Fornberg--Whitham} equation},
     journal = {Eurasian mathematical journal},
     pages = {65--75},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2015_6_1_a4/}
}
TY  - JOUR
AU  - H. R. Marasi
AU  - A. Pourmostafa Aqdam
TI  - Homotopy analysis method and homotopy Pad\'e approximants for~solving the Fornberg--Whitham equation
JO  - Eurasian mathematical journal
PY  - 2015
SP  - 65
EP  - 75
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2015_6_1_a4/
LA  - en
ID  - EMJ_2015_6_1_a4
ER  - 
%0 Journal Article
%A H. R. Marasi
%A A. Pourmostafa Aqdam
%T Homotopy analysis method and homotopy Pad\'e approximants for~solving the Fornberg--Whitham equation
%J Eurasian mathematical journal
%D 2015
%P 65-75
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2015_6_1_a4/
%G en
%F EMJ_2015_6_1_a4
H. R. Marasi; A. Pourmostafa Aqdam. Homotopy analysis method and homotopy Pad\'e approximants for~solving the Fornberg--Whitham equation. Eurasian mathematical journal, Tome 6 (2015) no. 1, pp. 65-75. http://geodesic.mathdoc.fr/item/EMJ_2015_6_1_a4/

[1] F. Abidi, K. Omrani, “The homotopy analysis method for solving the Fornberg-Whitham equation and comparison with Adomian decomposition method”, Comput. Math. Appl., 59 (2010), 2473–2750 | DOI | MR

[2] G. Adomian, Solving Frontier problems of physics: The decomposition method, Kluwer Academic, Dordrecht, 1994 | MR | Zbl

[3] A. W. Bush, Perturbation methods for engineers and scientists, CRC Press Library of Engineering Mathematics, CRC Press, Boca Raton, 1992 | Zbl

[4] P. A. Clarkson, M. D. Kruskal, “New similarity reductions of the Boussinesq equation”, J. Math. Phys., 30:10 (1989), 2201–2213 | DOI | MR | Zbl

[5] J. D. Cole, Perturbation methods in applied mathematics, Blaisdell Publishing Company, Waltham, Massachusetts, 1968 | MR | Zbl

[6] A. Degasperis, M. Proceci, Asymptotic integrability in symetry and perturbation theory, World Scientific, River Edge, 1999, 23–37 (Rome) | MR | Zbl

[7] J. H. He, “Approximate analytical solution for seepage flow with fractional derivatives in porous media”, Comput. Meth. Appl. Mech. Eng., 167 (1998), 57–68 | DOI | MR | Zbl

[8] J. H. He, “Variational iteration method: a kind of nonlinear analytical technique: some examples”, Int. J. Non-Linear Mech., 34 (1999), 699–708 | DOI | Zbl

[9] P. J. Hilton, An introduction to homotopy theory, Cambridge University Press, Cambridge, 1953 | MR | Zbl

[10] A. V. Karmishin, A. I. Zhukov, V. G. Kolosov, Methods of dynamics calculation and testing for thin-walled structures, Mashinostroyenie, M., 1990

[11] J. Kevorkian, J. D. Cole, Multiple scales and singular perturbation methods, Applied Mathematical Sciences, 114, Springer-Verlag, New York, 1995 | MR

[12] N. A. Kudryashov, M. V. Demina, “Polygons of differential equations for finding exact solutions”, Chaos, Solitons Fractals, 33:7 (2007), 1480–1496 | DOI | MR | Zbl

[13] N. A. Kudryashov, “Exact soliton solutions of the generalized evolution equation of wave dynamics”, J. Appl. Math. Mech., 52:3 (1988), 361–365 | DOI | MR

[14] N. A. Kudryashov, “Exact solutions of the generalized Kuramoto–Sivashinsky equation”, Phys. Lett. A, 147:5 (1990), 287–291 | DOI | MR

[15] N. A. Kudryashov, N. B. Loguinova, “Extended simpliest equation method for nonlinear differential equations”, Appl. Math. Comput., 205:1 (2008), 396–402 | DOI | MR | Zbl

[16] S. J. Liao, Beyond perturbation: introduction to homotopy analysis method, Chapman and Hall, Boca Raton, FL, 2004 | MR | Zbl

[17] S. J. Liao, The proposed homotipy analysis method technique for the solution of non-linear problems, PhD dissertation, Shanghai Jiao Tong University, 1992

[18] A. M. Lyapunov, General Problem on Stability of Motion, English translation, Taylor Francis, London, 1992 | MR

[19] H. R. Marasi, S. Karimi, “Convergence of variational iteration method for solving fractional Klein–Gordon equation”, J. Math. Comp. Sci., 4 (2014), 257–266

[20] H. R. Marasi, M. Nikbakht, “Adomian decompositiom method for boundary value problems”, Aus. J. Basic. Appl. Sci., 5 (2011), 2106–2111

[21] J. A. Murdock, Perturbations: Theory and methods, John Wiley Sons, New York, 1991 | MR | Zbl

[22] A. H. Nayfeh, Introduction to perturbation techniques, John Wiley Sons, New York, 1981 | MR | Zbl

[23] A. H. Nayfeh, Perturbation methods, John Wiley Sons, New York, 2000 | MR

[24] E. J. Parkes, B. R. Duffy, “An automated tanhfunction method for finding solitary wave solutions to nonlinear evolution equations”, Comput. Phys. Com., 98:3 (1996), 288–300 | DOI | Zbl

[25] J. Weiss, M. Tabor, G. Carnevalle, “The Painleve property for partial differential equations”, J. Math. Phys., 24:3 (1983), 522–526 | DOI | MR | Zbl

[26] J. Weiss, “The Painleve property for partial differential equations. II: Backlund transformation, Lax pairs, and the Schwarzian derivative”, J. Math. Phys., 24:6 (1983), 1405–1413 | DOI | MR | Zbl