Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2015_6_1_a4, author = {H. R. Marasi and A. Pourmostafa Aqdam}, title = {Homotopy analysis method and homotopy {Pad\'e} approximants for~solving the {Fornberg--Whitham} equation}, journal = {Eurasian mathematical journal}, pages = {65--75}, publisher = {mathdoc}, volume = {6}, number = {1}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2015_6_1_a4/} }
TY - JOUR AU - H. R. Marasi AU - A. Pourmostafa Aqdam TI - Homotopy analysis method and homotopy Pad\'e approximants for~solving the Fornberg--Whitham equation JO - Eurasian mathematical journal PY - 2015 SP - 65 EP - 75 VL - 6 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/EMJ_2015_6_1_a4/ LA - en ID - EMJ_2015_6_1_a4 ER -
%0 Journal Article %A H. R. Marasi %A A. Pourmostafa Aqdam %T Homotopy analysis method and homotopy Pad\'e approximants for~solving the Fornberg--Whitham equation %J Eurasian mathematical journal %D 2015 %P 65-75 %V 6 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/EMJ_2015_6_1_a4/ %G en %F EMJ_2015_6_1_a4
H. R. Marasi; A. Pourmostafa Aqdam. Homotopy analysis method and homotopy Pad\'e approximants for~solving the Fornberg--Whitham equation. Eurasian mathematical journal, Tome 6 (2015) no. 1, pp. 65-75. http://geodesic.mathdoc.fr/item/EMJ_2015_6_1_a4/
[1] F. Abidi, K. Omrani, “The homotopy analysis method for solving the Fornberg-Whitham equation and comparison with Adomian decomposition method”, Comput. Math. Appl., 59 (2010), 2473–2750 | DOI | MR
[2] G. Adomian, Solving Frontier problems of physics: The decomposition method, Kluwer Academic, Dordrecht, 1994 | MR | Zbl
[3] A. W. Bush, Perturbation methods for engineers and scientists, CRC Press Library of Engineering Mathematics, CRC Press, Boca Raton, 1992 | Zbl
[4] P. A. Clarkson, M. D. Kruskal, “New similarity reductions of the Boussinesq equation”, J. Math. Phys., 30:10 (1989), 2201–2213 | DOI | MR | Zbl
[5] J. D. Cole, Perturbation methods in applied mathematics, Blaisdell Publishing Company, Waltham, Massachusetts, 1968 | MR | Zbl
[6] A. Degasperis, M. Proceci, Asymptotic integrability in symetry and perturbation theory, World Scientific, River Edge, 1999, 23–37 (Rome) | MR | Zbl
[7] J. H. He, “Approximate analytical solution for seepage flow with fractional derivatives in porous media”, Comput. Meth. Appl. Mech. Eng., 167 (1998), 57–68 | DOI | MR | Zbl
[8] J. H. He, “Variational iteration method: a kind of nonlinear analytical technique: some examples”, Int. J. Non-Linear Mech., 34 (1999), 699–708 | DOI | Zbl
[9] P. J. Hilton, An introduction to homotopy theory, Cambridge University Press, Cambridge, 1953 | MR | Zbl
[10] A. V. Karmishin, A. I. Zhukov, V. G. Kolosov, Methods of dynamics calculation and testing for thin-walled structures, Mashinostroyenie, M., 1990
[11] J. Kevorkian, J. D. Cole, Multiple scales and singular perturbation methods, Applied Mathematical Sciences, 114, Springer-Verlag, New York, 1995 | MR
[12] N. A. Kudryashov, M. V. Demina, “Polygons of differential equations for finding exact solutions”, Chaos, Solitons Fractals, 33:7 (2007), 1480–1496 | DOI | MR | Zbl
[13] N. A. Kudryashov, “Exact soliton solutions of the generalized evolution equation of wave dynamics”, J. Appl. Math. Mech., 52:3 (1988), 361–365 | DOI | MR
[14] N. A. Kudryashov, “Exact solutions of the generalized Kuramoto–Sivashinsky equation”, Phys. Lett. A, 147:5 (1990), 287–291 | DOI | MR
[15] N. A. Kudryashov, N. B. Loguinova, “Extended simpliest equation method for nonlinear differential equations”, Appl. Math. Comput., 205:1 (2008), 396–402 | DOI | MR | Zbl
[16] S. J. Liao, Beyond perturbation: introduction to homotopy analysis method, Chapman and Hall, Boca Raton, FL, 2004 | MR | Zbl
[17] S. J. Liao, The proposed homotipy analysis method technique for the solution of non-linear problems, PhD dissertation, Shanghai Jiao Tong University, 1992
[18] A. M. Lyapunov, General Problem on Stability of Motion, English translation, Taylor Francis, London, 1992 | MR
[19] H. R. Marasi, S. Karimi, “Convergence of variational iteration method for solving fractional Klein–Gordon equation”, J. Math. Comp. Sci., 4 (2014), 257–266
[20] H. R. Marasi, M. Nikbakht, “Adomian decompositiom method for boundary value problems”, Aus. J. Basic. Appl. Sci., 5 (2011), 2106–2111
[21] J. A. Murdock, Perturbations: Theory and methods, John Wiley Sons, New York, 1991 | MR | Zbl
[22] A. H. Nayfeh, Introduction to perturbation techniques, John Wiley Sons, New York, 1981 | MR | Zbl
[23] A. H. Nayfeh, Perturbation methods, John Wiley Sons, New York, 2000 | MR
[24] E. J. Parkes, B. R. Duffy, “An automated tanhfunction method for finding solitary wave solutions to nonlinear evolution equations”, Comput. Phys. Com., 98:3 (1996), 288–300 | DOI | Zbl
[25] J. Weiss, M. Tabor, G. Carnevalle, “The Painleve property for partial differential equations”, J. Math. Phys., 24:3 (1983), 522–526 | DOI | MR | Zbl
[26] J. Weiss, “The Painleve property for partial differential equations. II: Backlund transformation, Lax pairs, and the Schwarzian derivative”, J. Math. Phys., 24:6 (1983), 1405–1413 | DOI | MR | Zbl