Asymptotic analysis of the generalized convection problem
Eurasian mathematical journal, Tome 6 (2015) no. 1, pp. 41-55

Voir la notice de l'article provenant de la source Math-Net.Ru

The averaging method is justified and the complete asymptotics of a solution periodic in time is constructed and justified for an evolutional system of partial differential equations with quickly oscillating in time junior terms, some of which are proportional to the frequency of oscillations. The considered system generalizes the well-known thermal liquid convection problem (in Oberdeck–Boussinesc approach) when a vessel with a liquid vibrates with high frequency.
@article{EMJ_2015_6_1_a2,
     author = {N. Ivleva and V. Levenshtam},
     title = {Asymptotic analysis of the generalized convection problem},
     journal = {Eurasian mathematical journal},
     pages = {41--55},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2015_6_1_a2/}
}
TY  - JOUR
AU  - N. Ivleva
AU  - V. Levenshtam
TI  - Asymptotic analysis of the generalized convection problem
JO  - Eurasian mathematical journal
PY  - 2015
SP  - 41
EP  - 55
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2015_6_1_a2/
LA  - en
ID  - EMJ_2015_6_1_a2
ER  - 
%0 Journal Article
%A N. Ivleva
%A V. Levenshtam
%T Asymptotic analysis of the generalized convection problem
%J Eurasian mathematical journal
%D 2015
%P 41-55
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2015_6_1_a2/
%G en
%F EMJ_2015_6_1_a2
N. Ivleva; V. Levenshtam. Asymptotic analysis of the generalized convection problem. Eurasian mathematical journal, Tome 6 (2015) no. 1, pp. 41-55. http://geodesic.mathdoc.fr/item/EMJ_2015_6_1_a2/