A survey of the recent results on characterizations of exponential stability and dichotomy over finite dimensional spaces
Eurasian mathematical journal, Tome 5 (2014) no. 4, pp. 113-133.

Voir la notice de l'article provenant de la source Math-Net.Ru

The main purpose of this article is the investigation of the recent advances on the exponential stability and dichotomy of autonomous and nonautonomous linear differential systems, in both continuous and discrete cases i.e. $\dot x(t)=Ax(t)$, $\dot x(t)=A(t)x(t)$, $x_{n+1}=Ax_n$ and $x_{n+1}=A_nx_n$ in terms of the boundedness of solutions of some Cauchy problems, where $A,A_n$, and $A(t)$ are square matrices, for any $n\in\mathbb Z_+$ and $t\in\mathbb R_+$.
@article{EMJ_2014_5_4_a7,
     author = {A. Zada and T. Li and R. Amin and G. Rahmat},
     title = {A survey of the recent results on characterizations of exponential stability and dichotomy over finite dimensional spaces},
     journal = {Eurasian mathematical journal},
     pages = {113--133},
     publisher = {mathdoc},
     volume = {5},
     number = {4},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2014_5_4_a7/}
}
TY  - JOUR
AU  - A. Zada
AU  - T. Li
AU  - R. Amin
AU  - G. Rahmat
TI  - A survey of the recent results on characterizations of exponential stability and dichotomy over finite dimensional spaces
JO  - Eurasian mathematical journal
PY  - 2014
SP  - 113
EP  - 133
VL  - 5
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2014_5_4_a7/
LA  - en
ID  - EMJ_2014_5_4_a7
ER  - 
%0 Journal Article
%A A. Zada
%A T. Li
%A R. Amin
%A G. Rahmat
%T A survey of the recent results on characterizations of exponential stability and dichotomy over finite dimensional spaces
%J Eurasian mathematical journal
%D 2014
%P 113-133
%V 5
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2014_5_4_a7/
%G en
%F EMJ_2014_5_4_a7
A. Zada; T. Li; R. Amin; G. Rahmat. A survey of the recent results on characterizations of exponential stability and dichotomy over finite dimensional spaces. Eurasian mathematical journal, Tome 5 (2014) no. 4, pp. 113-133. http://geodesic.mathdoc.fr/item/EMJ_2014_5_4_a7/

[1] W. Arendt, C. J. K. Batty, M. Hieber, F. Neubrander, Vector-valued Laplace Transforms and Cauchy Problems, Monographs in Mathematics, 96, Birkhäuser, Basel, 2001 | MR | Zbl

[2] S. Arshad, C. Buşe, A. Nosheen, A. Zada, “Connections between the stability of a Poincaré map and boundedness of certain associate sequences”, Electronic Journal of Qualitative Theory of Differential Equations, 16 (2011), 1–12 | MR

[3] S. Arshad, C. Buşe, O. Saierli, “Connections between exponential stability and boundedness of solutions of a couple of differential time depending and periodic systems”, Electronic Journal of Qualitative Theory of Differential Equations, 90 (2011), 1–16 | MR

[4] A. V. Balakrishnan, “Fractional powers of closed operators and semigroups generated by them”, Pacific J. Math., 10 (1960), 419–439 | DOI | MR

[5] S. Balint, “On the Perron–Bellman theorem for systems with constant coefficients”, Ann. Univ. Timisoara, 21 (1983), 3–8 | MR | Zbl

[6] V. Barbu, Differential Equations, Ed. Junimea, Iasi, 1985

[7] D. Barbu, C. Buşe, “Some remarks about Perron condition for strongly continuous $C_0$ semi groups”, Analele univ. Timisora, 35:1 (1997), 3–8 | MR | Zbl

[8] B. Basit, Some problems concerning different types of vector-valued almost periodic functions, Dissertationes Math. (Rozprawy Mat.), 338, 1995 | MR | Zbl

[9] A. G. Baskakov, “Some conditions for invertibility of linear differential and difference operators”, Russian Acad. Sci. Dokl. Math., 48 (1994), 498–501 | MR

[10] C. J. K. Batty, R. Chill, Y. Tomilov, “Strong stability of bounded evolution families and semigroups”, Journal of Functional Analysis, 193 (2002), 116–139 | DOI | MR | Zbl

[11] C. J. K. Batty, M. D. Blake, “Convergence of Laplace integrals”, C. R. Acad. Sci. Paris Serie 1, 330 (2000), 71–75 | DOI | MR | Zbl

[12] S. Braza, C. Buşe, J. Pecaric, “New characteriazation of asymptotic stability for evolution families on Banach Spaces”, Electronic Journal of Differential Equations, 38 (2004), 1–9 | MR

[13] C. Buşe, “On the Perron–Bellman theorem for evolutionary processes with exponential growth in Banach spaces”, New Zealand Journal of Mathematics, 27 (1998), 183–190 | MR | Zbl

[14] C. Buşe, D. Barbu, “Some remarks about the Perron condition for strongly continious semigroups”, Analele Univ. Timisora, 35:1 (1997), 3–8 | MR | Zbl

[15] C. Buşe, P. Cerone, S. S. Dragomir, A. Sofo, “Uniform stability of periodic discrete system in Banach spaces”, J. Difference Equ. Appl., 11 (2005), 1081–1088 | DOI | MR | Zbl

[16] C. Buşe, A. Pogan, “Individual exponential stability for evolution families of bounded and linear operators”, New Zealand Journal of Mathematics, 30 (2001), 15–24 | MR | Zbl

[17] C. Buşe, M. Reghiş, “On the Perron–Bellman theorem for strongly continious semigroups and periodic evolutionary processes in Banach spaces”, Italian Journal of Pure and Applied Mathematics, 4 (1998), 155–166 | MR | Zbl

[18] C. Buşe, A. Zada, “Dichotomy and boundedness of solutions for some discrete Cauchy problems”, Proceedings of IWOTA-2008, Operator Theory, Advances and Applications, 203, eds. J. A. Ball, V. Bolotnikov, W. Helton, L. Rodman, T. Spitkovsky, Birkhäuser Verlag, Basel, 2010, 165–174 | MR | Zbl

[19] C. Buşe, A. Zada, “Boundedness and exponential stability for periodic time dependent systems”, Electronic Journal of Qualitative Theory of Differential Equations, 37 (2009), 1–9 | MR

[20] C. Chicone, Y. Latushkin, Evolution Semigroups in Dynamical Systems and Differential Equations, Math. Surv. and Monographs, 70, Amer. Math. Soc., 1999 | DOI | MR | Zbl

[21] S. Clark, Y. Latushkin, S. Montgomery-Smith, T. Randolph, “Stability radius and internal versus external stability in Banach spaces: an evolution semigroup approach”, SIAM J. Control Optim., 38 (2000), 1757–1793 | DOI | MR | Zbl

[22] C. Corduneanu, Almost Periodic Functions, 2nd edition, Chelsea, New-York, 1989 | Zbl

[23] Y. L. Daletkii, M. G. Krein, Stability of solutions of differential equations in Banach spaces, Izd. Nauka, Moskwa, 1970 | MR

[24] R. Datko, “Uniform asymptotic stability of evolutionary processes in Banach space”, SIAM J. Math. Analysis, 3 (1973), 428–445 | DOI | MR

[25] D. A. Halanay, Stabilization of linear systems, Ed. All, 1994

[26] S. Elaydi, An introduction to difference equations, Undergraduate Texts in Mathematics, Third edition, Springer, New-York, 2005 | MR | Zbl

[27] A. Elkoutri, M. A. Taoudi, “Spectral inclusions and stability results for strongly continuous semigroups”, International Journal of Mathematics and Mathematical Sciences (IJMMS), 37 (2003), 2379–2387 | DOI | MR | Zbl

[28] K. J. Engel, R. Nagel, One-Parameter semigroups for linear evolutions equations, Springer-Verlag, 2000 | MR

[29] H. O. Fattorini, The Cauchy Problem, Addison Wesley, 1983 | MR

[30] C. Foias, F. H. Vasilescu, “Non-analytic local functional calculus”, Czech. Math. J., 24:99 (1974), 270–283 | MR | Zbl

[31] I. Gohberg, S. Goldberg, Basic Operator Theory, Birkhäuser, Boston–Basel, 1981 | MR | Zbl

[32] J. A. Goldstein, “Periodic and pseudo-periodic solutions of evolution equations”, Semigroups, Theory and applications, v. I, eds. H. Brézis, M. G. Crandall, F. Kappel, Longman, 1986, 142–146 | MR

[33] E. Hille, R. S. Philips, Functional Analysis and Semi-groups, Amer. Math. Soc. Coll. Publ., 31, Providence, R.I., 1957 | MR

[34] A. Ichikawa, “Null controllability with vanishing energy for discrete-time systems in Hilbert space”, SIAM J. Control Optim., 46:2 (2007), 683–693 | DOI | MR | Zbl

[35] D. Lassoued, “Exponential dichotomy of nonautonomous periodic systems in terms of the boundedness of certain periodic cauchy problems”, Electronic Journal of Differential Equations, 2013 (2013), 89, 7 pp. | MR | Zbl

[36] Academic Press, 1966 | Zbl

[37] Yu. I. Lyubich, Quôc Phong Vū, “Asymptotic stability of linear differential equations in Banach Spaces”, Studia Math., 88 (1988), 37–42 | MR | Zbl

[38] M. Megan, A. L. Sasu, B. Sasu, “On uniform exponential stability of periodic evolution operators in Banach spaces”, Acta Math. Univ. Comenian., 69 (2000), 97–106 | MR | Zbl

[39] N. Van Minh, Frank Räbiger, R. Schnaubelt, “Exponential stability, exponential expansiveness, and exponential dichotomy of evolution equations on the half line”, Integral Equations Operator Theory, 32 (1998), 332–353 | DOI | MR | Zbl

[40] V. Müller, “Power bounded operators and supercyclic vectors”, Proceedings of the American Mathematical Society, 131:12 (2003), 3807–3812 | DOI | MR | Zbl

[41] J. V. Neerven, The asymptotic behaviour of semigroups of linear operators, Birkhäuser, Basel, 1996 | MR | Zbl

[42] J. V. Neerven, “Individual stability of strongly continuous semigroups with uniformly bounded local resolvent”, Semigroup Forum, 53 (1996), 155–161 | DOI | MR | Zbl

[43] A. Pazy, Semigroups of linear operators and applications to partial differential equations, Springer-Verlag, 1983 | MR | Zbl

[44] G. Peano, “Integrazione per serie delle equazioni differenziali lineari”, Atti Reale Acc. Sci. Torino, 22 (1887), 293–302

[45] G. Peano, “Intégration par séries des équations différentielles linéaires”, Math. Ann., 32 (1888), 450–456 | DOI | MR

[46] O. Perron, “Die Stabilitätsfrage bei Differentialgleichungen”, Math. Z., 32 (1930), 703 –728 | DOI | MR | Zbl

[47] V. Q. Phong, “On stability of $C_0$-semigroups”, Proceedings of the American Mathematical Society, 129:10 (2002), 2871–2879 | DOI | MR

[48] G. D. Prato, E. Sinestrari, “Non autonomous evolution operators of hyperbolic type”, Semigroup Forum, 45 (1992), 302–321 | DOI | MR | Zbl

[49] J. Prüss, Evolutionary integral equations and applications, Monographs in Mathematics, 87, Birkhäuser Verlag, Basel, 1993 | DOI | MR | Zbl

[50] P. Preda, M. Megan, “Exponential dichotomy of evolutionary processes in Banach spaces”, Czehoslovak Math. Journal, 35:2 (1985), 312–333 | MR

[51] C. I. Preda, P. Preda, “An extension of the admissibility-type conditions for the exponential dichotomy of $C_0$-semigroups”, Integral Equations and Operator Theory, 63 (2009), 249–261 | DOI | MR | Zbl

[52] M. Reghis, “About exponential dichotomy of linear autonomous differential equations”, Qualitative problems for differential equations and control theory, World Sci. Publ., River Edge, NJ, 1995, 53–60 | MR | Zbl

[53] A. L. Sasu, “Integral equations on function spaces and dichotomy on the real line”, Integral Equations and Operator Theory, 58:1 (2007), 133–152 | DOI | MR | Zbl

[54] A. L. Sasu, B. Sasu, “Exponential Stability for linear skew-product flows”, Bull. Sci. Math., 128:9 (2004), 728–738 | DOI | MR

[55] R. Schnaubelt, “Well-posedness and asymptotic behavior of non-autonomous linear evolution equations”, Evolution equations, Semigroups and functional analysi (Milano, 2000), Progr. Nonlinear Differential Equations Appl., 50, Birkhäuser, Basel, 2002, 311–338 | MR | Zbl

[56] Y. Wang, A. Zada, N. Ahmad, D. Lassoued, T. Li, “Uniform exponential stability of discrete evolution families on space of $p$-periodic sequences”, Abstract and Applied Analysis, 2014 (2014), Article ID 784289, 4 pp. | MR

[57] G. Weiss, “Weak $L^p$-stability of linear semigroup on a Hilbert space implies exponential stability”, J. Differential Equations, 76 (1988), 269–285 | DOI | MR | Zbl

[58] A. Zada, “A characterization of dichotomy in terms of boundedness of solutions for some Cauchy Problems”, Electronic Journal of Qualitative Theory of Differential Equations, 94 (2008), 1–5 | MR

[59] A. Zada, Asymptotic behavior of solutions for a class of semi-linear differential systems in finite Dimensional Spaces, Dissertation, Abdus Salam school of mathematical sciences GC University, Lahore, Pakistan, 2010

[60] A. Zada, R. Amin, M. Asif, G. A. Khan, “On discrete characterization of dichotomy for autonomous systems”, Journal of Advanced Research in Dynamical Systems and control, 6:1 (2014), 48–55 | MR

[61] A. Zada, N. Ahmad, I. Khan, F. Khan, “On the exponential stability of discrete semigroups”, Qual. Theory Dyn. Syst., 14:1 (2015), 149–155 | DOI | MR | Zbl

[62] A. Zada, S. Arshad, G. Rahmat, R. Amin, “Dichotomy of Poincar?e Maps and Boundedness of some Cauchy sequences”, Applied Mathematics E-Notes, 12 (2012), 14–22 | MR | Zbl

[63] A. Zada, S. Arshad, G. Rahmat, A. Khan, “On the Dichotomy of Non-Autonomous Systems Over Finite Dimensional Spaces”, Appl. Math. Inf. Sci., 9:4 (2015), 1941–1946 | MR

[64] A. Zada, G. A. Khan, M. Asif, R. Amin, “On dichotomy of autonomous systems and boundedness of some Cauchy problem”, International Journal of Research and Reviews in Applied Sciences, 14:3 (2013), 533–538 | MR