Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2014_5_4_a7, author = {A. Zada and T. Li and R. Amin and G. Rahmat}, title = {A survey of the recent results on characterizations of exponential stability and dichotomy over finite dimensional spaces}, journal = {Eurasian mathematical journal}, pages = {113--133}, publisher = {mathdoc}, volume = {5}, number = {4}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2014_5_4_a7/} }
TY - JOUR AU - A. Zada AU - T. Li AU - R. Amin AU - G. Rahmat TI - A survey of the recent results on characterizations of exponential stability and dichotomy over finite dimensional spaces JO - Eurasian mathematical journal PY - 2014 SP - 113 EP - 133 VL - 5 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/EMJ_2014_5_4_a7/ LA - en ID - EMJ_2014_5_4_a7 ER -
%0 Journal Article %A A. Zada %A T. Li %A R. Amin %A G. Rahmat %T A survey of the recent results on characterizations of exponential stability and dichotomy over finite dimensional spaces %J Eurasian mathematical journal %D 2014 %P 113-133 %V 5 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/EMJ_2014_5_4_a7/ %G en %F EMJ_2014_5_4_a7
A. Zada; T. Li; R. Amin; G. Rahmat. A survey of the recent results on characterizations of exponential stability and dichotomy over finite dimensional spaces. Eurasian mathematical journal, Tome 5 (2014) no. 4, pp. 113-133. http://geodesic.mathdoc.fr/item/EMJ_2014_5_4_a7/
[1] W. Arendt, C. J. K. Batty, M. Hieber, F. Neubrander, Vector-valued Laplace Transforms and Cauchy Problems, Monographs in Mathematics, 96, Birkhäuser, Basel, 2001 | MR | Zbl
[2] S. Arshad, C. Buşe, A. Nosheen, A. Zada, “Connections between the stability of a Poincaré map and boundedness of certain associate sequences”, Electronic Journal of Qualitative Theory of Differential Equations, 16 (2011), 1–12 | MR
[3] S. Arshad, C. Buşe, O. Saierli, “Connections between exponential stability and boundedness of solutions of a couple of differential time depending and periodic systems”, Electronic Journal of Qualitative Theory of Differential Equations, 90 (2011), 1–16 | MR
[4] A. V. Balakrishnan, “Fractional powers of closed operators and semigroups generated by them”, Pacific J. Math., 10 (1960), 419–439 | DOI | MR
[5] S. Balint, “On the Perron–Bellman theorem for systems with constant coefficients”, Ann. Univ. Timisoara, 21 (1983), 3–8 | MR | Zbl
[6] V. Barbu, Differential Equations, Ed. Junimea, Iasi, 1985
[7] D. Barbu, C. Buşe, “Some remarks about Perron condition for strongly continuous $C_0$ semi groups”, Analele univ. Timisora, 35:1 (1997), 3–8 | MR | Zbl
[8] B. Basit, Some problems concerning different types of vector-valued almost periodic functions, Dissertationes Math. (Rozprawy Mat.), 338, 1995 | MR | Zbl
[9] A. G. Baskakov, “Some conditions for invertibility of linear differential and difference operators”, Russian Acad. Sci. Dokl. Math., 48 (1994), 498–501 | MR
[10] C. J. K. Batty, R. Chill, Y. Tomilov, “Strong stability of bounded evolution families and semigroups”, Journal of Functional Analysis, 193 (2002), 116–139 | DOI | MR | Zbl
[11] C. J. K. Batty, M. D. Blake, “Convergence of Laplace integrals”, C. R. Acad. Sci. Paris Serie 1, 330 (2000), 71–75 | DOI | MR | Zbl
[12] S. Braza, C. Buşe, J. Pecaric, “New characteriazation of asymptotic stability for evolution families on Banach Spaces”, Electronic Journal of Differential Equations, 38 (2004), 1–9 | MR
[13] C. Buşe, “On the Perron–Bellman theorem for evolutionary processes with exponential growth in Banach spaces”, New Zealand Journal of Mathematics, 27 (1998), 183–190 | MR | Zbl
[14] C. Buşe, D. Barbu, “Some remarks about the Perron condition for strongly continious semigroups”, Analele Univ. Timisora, 35:1 (1997), 3–8 | MR | Zbl
[15] C. Buşe, P. Cerone, S. S. Dragomir, A. Sofo, “Uniform stability of periodic discrete system in Banach spaces”, J. Difference Equ. Appl., 11 (2005), 1081–1088 | DOI | MR | Zbl
[16] C. Buşe, A. Pogan, “Individual exponential stability for evolution families of bounded and linear operators”, New Zealand Journal of Mathematics, 30 (2001), 15–24 | MR | Zbl
[17] C. Buşe, M. Reghiş, “On the Perron–Bellman theorem for strongly continious semigroups and periodic evolutionary processes in Banach spaces”, Italian Journal of Pure and Applied Mathematics, 4 (1998), 155–166 | MR | Zbl
[18] C. Buşe, A. Zada, “Dichotomy and boundedness of solutions for some discrete Cauchy problems”, Proceedings of IWOTA-2008, Operator Theory, Advances and Applications, 203, eds. J. A. Ball, V. Bolotnikov, W. Helton, L. Rodman, T. Spitkovsky, Birkhäuser Verlag, Basel, 2010, 165–174 | MR | Zbl
[19] C. Buşe, A. Zada, “Boundedness and exponential stability for periodic time dependent systems”, Electronic Journal of Qualitative Theory of Differential Equations, 37 (2009), 1–9 | MR
[20] C. Chicone, Y. Latushkin, Evolution Semigroups in Dynamical Systems and Differential Equations, Math. Surv. and Monographs, 70, Amer. Math. Soc., 1999 | DOI | MR | Zbl
[21] S. Clark, Y. Latushkin, S. Montgomery-Smith, T. Randolph, “Stability radius and internal versus external stability in Banach spaces: an evolution semigroup approach”, SIAM J. Control Optim., 38 (2000), 1757–1793 | DOI | MR | Zbl
[22] C. Corduneanu, Almost Periodic Functions, 2nd edition, Chelsea, New-York, 1989 | Zbl
[23] Y. L. Daletkii, M. G. Krein, Stability of solutions of differential equations in Banach spaces, Izd. Nauka, Moskwa, 1970 | MR
[24] R. Datko, “Uniform asymptotic stability of evolutionary processes in Banach space”, SIAM J. Math. Analysis, 3 (1973), 428–445 | DOI | MR
[25] D. A. Halanay, Stabilization of linear systems, Ed. All, 1994
[26] S. Elaydi, An introduction to difference equations, Undergraduate Texts in Mathematics, Third edition, Springer, New-York, 2005 | MR | Zbl
[27] A. Elkoutri, M. A. Taoudi, “Spectral inclusions and stability results for strongly continuous semigroups”, International Journal of Mathematics and Mathematical Sciences (IJMMS), 37 (2003), 2379–2387 | DOI | MR | Zbl
[28] K. J. Engel, R. Nagel, One-Parameter semigroups for linear evolutions equations, Springer-Verlag, 2000 | MR
[29] H. O. Fattorini, The Cauchy Problem, Addison Wesley, 1983 | MR
[30] C. Foias, F. H. Vasilescu, “Non-analytic local functional calculus”, Czech. Math. J., 24:99 (1974), 270–283 | MR | Zbl
[31] I. Gohberg, S. Goldberg, Basic Operator Theory, Birkhäuser, Boston–Basel, 1981 | MR | Zbl
[32] J. A. Goldstein, “Periodic and pseudo-periodic solutions of evolution equations”, Semigroups, Theory and applications, v. I, eds. H. Brézis, M. G. Crandall, F. Kappel, Longman, 1986, 142–146 | MR
[33] E. Hille, R. S. Philips, Functional Analysis and Semi-groups, Amer. Math. Soc. Coll. Publ., 31, Providence, R.I., 1957 | MR
[34] A. Ichikawa, “Null controllability with vanishing energy for discrete-time systems in Hilbert space”, SIAM J. Control Optim., 46:2 (2007), 683–693 | DOI | MR | Zbl
[35] D. Lassoued, “Exponential dichotomy of nonautonomous periodic systems in terms of the boundedness of certain periodic cauchy problems”, Electronic Journal of Differential Equations, 2013 (2013), 89, 7 pp. | MR | Zbl
[36] Academic Press, 1966 | Zbl
[37] Yu. I. Lyubich, Quôc Phong Vū, “Asymptotic stability of linear differential equations in Banach Spaces”, Studia Math., 88 (1988), 37–42 | MR | Zbl
[38] M. Megan, A. L. Sasu, B. Sasu, “On uniform exponential stability of periodic evolution operators in Banach spaces”, Acta Math. Univ. Comenian., 69 (2000), 97–106 | MR | Zbl
[39] N. Van Minh, Frank Räbiger, R. Schnaubelt, “Exponential stability, exponential expansiveness, and exponential dichotomy of evolution equations on the half line”, Integral Equations Operator Theory, 32 (1998), 332–353 | DOI | MR | Zbl
[40] V. Müller, “Power bounded operators and supercyclic vectors”, Proceedings of the American Mathematical Society, 131:12 (2003), 3807–3812 | DOI | MR | Zbl
[41] J. V. Neerven, The asymptotic behaviour of semigroups of linear operators, Birkhäuser, Basel, 1996 | MR | Zbl
[42] J. V. Neerven, “Individual stability of strongly continuous semigroups with uniformly bounded local resolvent”, Semigroup Forum, 53 (1996), 155–161 | DOI | MR | Zbl
[43] A. Pazy, Semigroups of linear operators and applications to partial differential equations, Springer-Verlag, 1983 | MR | Zbl
[44] G. Peano, “Integrazione per serie delle equazioni differenziali lineari”, Atti Reale Acc. Sci. Torino, 22 (1887), 293–302
[45] G. Peano, “Intégration par séries des équations différentielles linéaires”, Math. Ann., 32 (1888), 450–456 | DOI | MR
[46] O. Perron, “Die Stabilitätsfrage bei Differentialgleichungen”, Math. Z., 32 (1930), 703 –728 | DOI | MR | Zbl
[47] V. Q. Phong, “On stability of $C_0$-semigroups”, Proceedings of the American Mathematical Society, 129:10 (2002), 2871–2879 | DOI | MR
[48] G. D. Prato, E. Sinestrari, “Non autonomous evolution operators of hyperbolic type”, Semigroup Forum, 45 (1992), 302–321 | DOI | MR | Zbl
[49] J. Prüss, Evolutionary integral equations and applications, Monographs in Mathematics, 87, Birkhäuser Verlag, Basel, 1993 | DOI | MR | Zbl
[50] P. Preda, M. Megan, “Exponential dichotomy of evolutionary processes in Banach spaces”, Czehoslovak Math. Journal, 35:2 (1985), 312–333 | MR
[51] C. I. Preda, P. Preda, “An extension of the admissibility-type conditions for the exponential dichotomy of $C_0$-semigroups”, Integral Equations and Operator Theory, 63 (2009), 249–261 | DOI | MR | Zbl
[52] M. Reghis, “About exponential dichotomy of linear autonomous differential equations”, Qualitative problems for differential equations and control theory, World Sci. Publ., River Edge, NJ, 1995, 53–60 | MR | Zbl
[53] A. L. Sasu, “Integral equations on function spaces and dichotomy on the real line”, Integral Equations and Operator Theory, 58:1 (2007), 133–152 | DOI | MR | Zbl
[54] A. L. Sasu, B. Sasu, “Exponential Stability for linear skew-product flows”, Bull. Sci. Math., 128:9 (2004), 728–738 | DOI | MR
[55] R. Schnaubelt, “Well-posedness and asymptotic behavior of non-autonomous linear evolution equations”, Evolution equations, Semigroups and functional analysi (Milano, 2000), Progr. Nonlinear Differential Equations Appl., 50, Birkhäuser, Basel, 2002, 311–338 | MR | Zbl
[56] Y. Wang, A. Zada, N. Ahmad, D. Lassoued, T. Li, “Uniform exponential stability of discrete evolution families on space of $p$-periodic sequences”, Abstract and Applied Analysis, 2014 (2014), Article ID 784289, 4 pp. | MR
[57] G. Weiss, “Weak $L^p$-stability of linear semigroup on a Hilbert space implies exponential stability”, J. Differential Equations, 76 (1988), 269–285 | DOI | MR | Zbl
[58] A. Zada, “A characterization of dichotomy in terms of boundedness of solutions for some Cauchy Problems”, Electronic Journal of Qualitative Theory of Differential Equations, 94 (2008), 1–5 | MR
[59] A. Zada, Asymptotic behavior of solutions for a class of semi-linear differential systems in finite Dimensional Spaces, Dissertation, Abdus Salam school of mathematical sciences GC University, Lahore, Pakistan, 2010
[60] A. Zada, R. Amin, M. Asif, G. A. Khan, “On discrete characterization of dichotomy for autonomous systems”, Journal of Advanced Research in Dynamical Systems and control, 6:1 (2014), 48–55 | MR
[61] A. Zada, N. Ahmad, I. Khan, F. Khan, “On the exponential stability of discrete semigroups”, Qual. Theory Dyn. Syst., 14:1 (2015), 149–155 | DOI | MR | Zbl
[62] A. Zada, S. Arshad, G. Rahmat, R. Amin, “Dichotomy of Poincar?e Maps and Boundedness of some Cauchy sequences”, Applied Mathematics E-Notes, 12 (2012), 14–22 | MR | Zbl
[63] A. Zada, S. Arshad, G. Rahmat, A. Khan, “On the Dichotomy of Non-Autonomous Systems Over Finite Dimensional Spaces”, Appl. Math. Inf. Sci., 9:4 (2015), 1941–1946 | MR
[64] A. Zada, G. A. Khan, M. Asif, R. Amin, “On dichotomy of autonomous systems and boundedness of some Cauchy problem”, International Journal of Research and Reviews in Applied Sciences, 14:3 (2013), 533–538 | MR