The Cauchy problem for one-dimensional wave equations with a~nonlinear dissipative term
Eurasian mathematical journal, Tome 5 (2014) no. 4, pp. 92-112.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Cauchy problem for one-dimensional wave equations with a nonlinear dissipative term is investigated. Under consideration are the problems of uniqueness and existence of local, global and blow-up solutions. The paper's originality is the coalescence of the two standard methods: a priori estimate of solutions in the class of continuous functions is given by energetic methods; basing on this result a priori estimate in the class of continuously differentiable functions using classical method of characteristics is obtained.
@article{EMJ_2014_5_4_a6,
     author = {O. Jokhadze},
     title = {The {Cauchy} problem for one-dimensional wave equations with a~nonlinear dissipative term},
     journal = {Eurasian mathematical journal},
     pages = {92--112},
     publisher = {mathdoc},
     volume = {5},
     number = {4},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2014_5_4_a6/}
}
TY  - JOUR
AU  - O. Jokhadze
TI  - The Cauchy problem for one-dimensional wave equations with a~nonlinear dissipative term
JO  - Eurasian mathematical journal
PY  - 2014
SP  - 92
EP  - 112
VL  - 5
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2014_5_4_a6/
LA  - en
ID  - EMJ_2014_5_4_a6
ER  - 
%0 Journal Article
%A O. Jokhadze
%T The Cauchy problem for one-dimensional wave equations with a~nonlinear dissipative term
%J Eurasian mathematical journal
%D 2014
%P 92-112
%V 5
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2014_5_4_a6/
%G en
%F EMJ_2014_5_4_a6
O. Jokhadze. The Cauchy problem for one-dimensional wave equations with a~nonlinear dissipative term. Eurasian mathematical journal, Tome 5 (2014) no. 4, pp. 92-112. http://geodesic.mathdoc.fr/item/EMJ_2014_5_4_a6/

[1] Y. Ebihara, “On the global Cauchy problem for $\square u+g^2u-u^3=f$”, J. Math. Anal. Appl., 64 (1978), 398–406 | DOI | MR | Zbl

[2] G. M. Fikhtengoltz, The course of differential and integral calculus, v. II, Nauka, Moscow, 1966 (in Russian)

[3] D. Henry, Geometrical theory of semi-linear parabolic equations, Mir, Moscow, 1985

[4] M. R. Hestenes, “Extensions of de range of a differentiable function”, Duke Math. J., 8 (1941), 183–192 | DOI | MR | Zbl

[5] L. Hörmander, Linear partial differential operators, Springer-Verlag, Berlin–Göttingen–Heidelberg, 1963 | MR | Zbl

[6] L. Hörmander, Lectures on nonlinear hyperbolic differential equations, Springer-Verlag, Berlin, 1997 | MR | Zbl

[7] O. Jokhadze, “On existence and nonexistence of global solutions of Cauchy–Goursat problem for nonlinear wave equations”, J. Math. Anal. Appl., 340 (2008), 1033–1045 | DOI | MR | Zbl

[8] O. Jokhadze, B. Midodashvili, “The first Darboux problem for nonlinear wave equations with a nonlinear positive source term”, J. Nonlinear Analysis: Theory, Methods and Applications, 69 (2008), 3005–3015 | DOI | MR | Zbl

[9] O. Jokhadze, “The Cauchy–Goursat problem for one–dimensional semilinear wave equations”, Communications in Partial Differential Equations, 34:4 (2009), 367–382 | DOI | MR | Zbl

[10] T. Kato, “Blow-up of solutions of some nonlinear hyperbolic equations”, Commun. Pure and Appl. Math., 33:4 (1980), 501–505 | DOI | MR | Zbl

[11] S. Kharibegashvili, “On the solvability of one multidimensional version of the first Darboux problem for some nonlinear wave equations”, J. Nonlinear Analysis: Theory, Methods and Applications, 68 (2008), 912–924 | DOI | MR | Zbl

[12] S. Kharibegashvili, “On the solvability of the Cauchy characteristic problem for a nonlinear equation with iterated wave operator in the principal part”, J. Math. Anal. Appl., 338 (2008), 71–84 | DOI | MR

[13] J. L. Lions, Quelques méthodes de résolution des problémes aux limites non linéaires, Dunod, Gauthier-Villars, Paris, 1969 | MR

[14] J. L. Lions, W. Strauss, “Some nonlinear evolution equations”, Bull. Soc. Math. France, 93 (1965), 43–96 | MR | Zbl

[15] L. Liu, M. Wang, “Global existence and blow-up of solutions for some hyperbolic systems with damping and source terms”, Nonlinear Analysis, 64 (2006), 69–91 | DOI | MR | Zbl

[16] E. Mitidieri, S. I. Pohozaev, “A priori estimates and blow-up of solutions to nonlinear partial differential equations and inequalities”, Proc. Steklov Inst. Math., 234, 2001, 3–383 | MR | Zbl

[17] E. Mitidieri, S. I. Pohozaev, “Lifespan estimates for solutions of some evolution inequalities”, Differential Equations, 45:10 1473–1484 (2009) | DOI | MR | Zbl

[18] M. Nakao, K. Ono, “Existence of global solutions to the Cauchy problem for the semilinear dissipative wave equations”, Math. Z., 214 (1993), 325–342 | DOI | MR | Zbl

[19] K. Ono, “On the global existence and decay of solutions for semilinear telegraph equations”, International Journal of Applied Mathematics, 2:9 (2000), 1121–1136 | MR | Zbl

[20] I. Segal, “Nonlinear semigroups”, Ann. of Math., 78 (1963), 339–364 | DOI | MR | Zbl

[21] G. Todorova, E. Vitillaro, “Blow-up for nonlinear dissipative wave equations in $R^n$”, J. Math. Anal. Appl., 303:1 (2005), 242–257 | DOI | MR | Zbl

[22] V. A. Trenogin, Functional analysis, Nauka, Moscow, 1993 (in Russian) | MR | Zbl

[23] L. Veron, S. I. Pohozaev, “Blow-up results for nonlinear hyperbolic inequaties”, Ann. Scuola Norm. Super. Pisa. Cl. Sci. Ser. 4, 29:2 (2001), 393–420 | MR

[24] Y. Whitney, “Analytic extension of differentiable functions defined in closed set”, Trans. Amer. Math. Soc., 36 (1934), 63–89 | DOI | MR | Zbl

[25] T. P. Witelski, A. J. Bernoff, A. L. Bertozzi, “Blow-up and dissipation in a critical-case unstable thin film equation”, European Journal of Applied Mathematics, 15:2 (2004), 223–256 | DOI | MR | Zbl