Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2014_5_4_a1, author = {A. G. Barseghyan}, title = {Integral equations with substochastic kernels}, journal = {Eurasian mathematical journal}, pages = {25--32}, publisher = {mathdoc}, volume = {5}, number = {4}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2014_5_4_a1/} }
A. G. Barseghyan. Integral equations with substochastic kernels. Eurasian mathematical journal, Tome 5 (2014) no. 4, pp. 25-32. http://geodesic.mathdoc.fr/item/EMJ_2014_5_4_a1/
[1] S. M. Andriyan, A. Kh. Khachatryan, “On a problem of physical kinetics”, Computational Mathematics and Mathematical Physics, 45:11 (2005), 1982–1989 | MR | Zbl
[2] L. G. Arabadzhyan, N. B. Engibaryan, “Convolution equations and nonlinear functional equations”, J. Math. Sci., 36:6 (1987), 745–791 | DOI | Zbl
[3] A. G. Barseghyan, “On a distribution of sums of identically distributed random variables”, Teor. Veroyatnost. i Primenen., 57:1 (2012), 155–158 | DOI | MR | Zbl
[4] J. Casti, R. Kalaba, Imbedding methods in applied mathematics, Series Applied Mathematics and Computation, 2, Addison-Wesley Publishing Company, Reading, Mass.–London–Amsterdam, 1973 | MR | Zbl
[5] C. Cercingnani, Theory and application of the Boltzmann equation, Elsevier, New York, 1975 | MR
[6] N. B. Engibaryan, “On the fixed points of monotonic operators in the critical case”, Izvestiya: Mathematics, 70:5 (2006), 931–947 | DOI | MR | Zbl
[7] N. R. Hansen, “The maximum of a random walk reflected at a general barrier”, The Annals of Applied Probability, 16:1 (2006), 15–29 | DOI | MR | Zbl
[8] D. V. Lindley, “The theory of queue with a single server”, Proc. Cambridge Phil. Soc., 48 (1952), 277–289 | DOI | MR
[9] F. Spitzer, “The Wiener–Hopf equation whose kernel is a probability density”, Duke Math. J., 24 (1957), 327–343 | DOI | MR | Zbl
[10] N. Wiener, E. Hopf, “Über eine Klasse singulärer Integralgleichungen”, Sitz. Akad. Wiss. Berlin, 1931 (1931), 696–706 | Zbl