Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2014_5_3_a3, author = {A. G. Kusraev}, title = {Injective {Banach} lattices: a survey}, journal = {Eurasian mathematical journal}, pages = {58--79}, publisher = {mathdoc}, volume = {5}, number = {3}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2014_5_3_a3/} }
A. G. Kusraev. Injective Banach lattices: a survey. Eurasian mathematical journal, Tome 5 (2014) no. 3, pp. 58-79. http://geodesic.mathdoc.fr/item/EMJ_2014_5_3_a3/
[1] Yu. A. Abramovich, “Injective envelopes of normed lattices”, Dokl. Acad. Nauk SSSR, 197:4 (1971), 743–745
[2] Y. A. Abramovich, C. D. Aliprantis, An Invitation to Operator Theory, Amer. Math. Soc., Providence, R.I., 2002
[3] Y. A. Abramovich, C. D. Aliprantis, “Positive operators”, Handbook of the Geometry of Banach Spaces, v. 1, eds. W. B. Johnson, J. Lindenstrauss, Elsevier Science B. V., Amsterdam a.o., 2001, 85–122 | DOI
[4] A. Alfsen, E. Effros, “Structure in real Banach spaces”, Ann. of Math., II Ser., 96 (1972), 98–113 | DOI
[5] C. D. Aliprantis, O. Burkinshaw, Positive Operators, Acad. Press Inc., London etc., 1985
[6] W. Arendt, “Factorization by lattice homomorphisms”, Math. Z., 185:4 (1984), 567–571 | DOI
[7] E. Behrends, $M$-Structure and Banach–Stone Theorem, Lecture Notes in Math., 736, Springer, Berlin etc., 1979
[8] J. L. Bell, Set Theory: Boolean-Valued Models and Independence Proofs in Set Theory, Oxford logic guides, 47, Clarendon Press, Oxford, 2005
[9] G. Birkhoff, J. von Neumann, “The logic of quantum mechanics”, Ann. Math., 37 (1936), 823–843 | DOI
[10] Q. Bu, G. Buskes, A. G. Kusraev, “Bilinear maps on product of vector lattices: A survey”, Positivity, eds. K. Boulabiar, G. Buskes, A. Triki, Birkhäuser, Basel a.o., 2007, 97–126 | DOI
[11] G. Buskes, “Separably-injective Banach lattices are injective”, Proc. Roy. Irish Acad. Sect., A85:2 (1985), 185–186
[12] D. I. Cartwright, “Extension of positive operators between Banach lattices”, Memoirs Amer. Math. Soc., 164, 1975, 1–48
[13] H. B. Cohen, “Injective envelopes of Banach spaces”, Bull. Amer. Math. Soc., 70 (1964), 723–726 | DOI
[14] K. Engesser, D. M. Gabbay, D. Lehmann (eds.), Handbook of Quantum Logic and Quantum Structures, Elsevier, Amsterdam a.o., 2009
[15] D. H. Fremlin, “Tensor product of Archimedean vector lattices”, Amer. J. Math., 94:3 (1972), 777–798 | DOI
[16] D. H. Fremlin, “Tensor products of Banach lattices”, Math. Ann., 211 (1974), 87–106 | DOI
[17] D. H. Fremlin, Measure Theory, v. 2, Broad Foundation, Cambridge University Press, 2001
[18] D. H. Fremlin, Measure Theory, v. 3, Measure Algebras, Cambridge University Press, 2002
[19] G. Gierz, “Representation of spaces of compact operators and applications to the approximation property”, Arch. Math., 30:1 (1978), 622–628 | DOI
[20] D. B. Goodner, “Projections in normed linear spaces”, Trans. Amer. Math. Soc., 69 (1950), 89–108 | DOI
[21] E. I. Gordon, “Real numbers in Boolean-valued models of set theory and $K$-spaces”, Dokl. Akad. Nauk SSSR, 237:4 (1977), 773–775
[22] E. I. Gordon, “$K$-spaces in Boolean-valued models of set theory”, Dokl. Akad. Nauk SSSR, 258:4 (1981), 777–780
[23] E. I. Gordon, “To the theorems of identity preservation in $K$-spaces”, Sibirsk. Mat. Zh., 23:5 (1982), 55–65
[24] A. Grothendieck, “Une caractérisation vectorielle métrique des espaces $L^1$”, Canad. J. Math., 7 (1955), 552–561 | DOI
[25] P. Harmand, D. Werner, W. Wener, $M$-Ideals in Banach Spaces and Banach Algebras, Lecture Notes in Math., 1547, Springer, Berlin etc., 1993
[26] R. Haydon, “Injective Banach lattices”, Math. Z., 156 (1974), 19–47 | DOI
[27] R. Haydon, M. Levy, Y. Raynaud, Randomly Normed Spaces, Hermann, Paris, 1991
[28] S. Kakutani, “Concrete representation of abstract $(L)$-spaces and the mean ergodic theorem”, Ann. Math., 42 (1941), 523–537 | DOI
[29] S. Kakutani, “Concrete representation of abstract $(M)$-spaces”, Ann. of Math., 42 (1941), 994–1024 | DOI
[30] L. V. Kantorovich, “Lineare halbgeordnete Räume”, Mat. Sbornik, 2:44 (1937), 121–165
[31] L. V. Kantorovich, B. Z. Vulikh, A. G. Pinsker, Functional Analysis in Semiordered Spaces, Gostekhizdat, M.–L., 1950 (in Russian)
[32] R. Kaufman, “A type of extension of Banach spaces”, Acta. Sci. Math., 27 (1966), 163–166
[33] J. L. Kelley, “Banach spaces with the extension property”, Trans. Amer. Math. Soc., 72 (1952), 323–326 | DOI
[34] S. Koppelberg, “Free constructions”, Handbook of Boolean algebras, v. 1, eds. J. D. Monk, R. Bonnet, Elsevier Sci. Publ. B.V.; North-Holland, 1989, 129–172
[35] M. G. Kreĭn, S. G. Kreĭn, “On an inner characteristic of the set of all continuous functions defined on a bicompact Hausdorff space”, Dokl. Akad. Nauk SSSR, 27 (1940), 427–430
[36] A. G. Kusraev, Dominated Operators, Kluwer, Dordrecht, 2000
[37] A. G. Kusraev, Majorized Operators, Nauka, M., 2003 (in Russian)
[38] A. G. Kusraev, Boolean Valued Analysis Approach to Injective Banach Lattices, Preprint No 1, SMI VSC RAS, Vladikavkaz, 2011, 28 pp.
[39] A. G. Kusraev, Boolean Valued Analysis Approach to Injective Banach Lattices, II, Preprint No 1, SMI VSC RAS, Vladikavkaz, 2012, 26 pp.
[40] Dokl. Math., 85:3 (2012), 341–343 | DOI
[41] Dokl. Math., 88:3 (2013), 1–4 | DOI
[42] A. G. Kusraev, “Tensor product of injective Banach lattices”, Studies on Math. Anal., eds. Yu. F. Korobeĭnik, A. G. Kusraev, VSC RAS, Vladikavkaz, 2013, 115–133
[43] Kluwer, Dordrecht, 1999
[44] A. G. Kusraev, S. S. Kutateladze, Introduction to Boolean Valued Analysis, Nauka, M., 2005 (in Russian)
[45] S. S. Kutateladze, “What is Boolean Valued Analysis”, Siberian Electronic Mathematical Reports, 3 (2006), 402–427
[46] H. E. Lacey, The Isometric Theory of Classical Banach Spaces, Springer-Verlag, Berlin etc., 1974
[47] J. Lindenstrauss, L. Tzafriri, Classical Banach Spaces, v. 2, Function Spaces, Springer-Verlag, Berlin etc., 1979
[48] J. Lindenstrauss, L. Tzafriri, “On the isomorphic classification of injective Banach lattices”, Advances Math., 7B (1981), 489–498
[49] J. Lindenstrauss, D. E. Wulbert, “On the classification of the Banach spaces whose duals are $L^1$-spaces”, J. Funct. Anal., 4 (1969), 332–349 | DOI
[50] H. P. Lotz, “Extensions and liftings of positive linear mappings on Banach lattices”, Trans. Amer. Math. Soc., 211 (1975), 85–100 | DOI
[51] W. A. J. Luxemburg, A. C. Zaanen, Riesz Spaces, v. 1, North-Holland, Amsterdam–London, 1971
[52] P. J. Mangheni, “The classification of injective Banach lattices”, Israel J. Math., 48 (1984), 341–347 | DOI
[53] P. Meyer-Nieberg, Banach Lattices, Springer, Berlin etc., 1991
[54] N. Nakano, “Uber das System aller stetigen Funktionen auf einem topologischen Raum”, Proc. Imp. Acad. Tokyo, 17 (1941), 308–310 | DOI
[55] L. Nachbin, “A theorem of Hahn–Banach type for linear transformation”, Trans. Amer. Math. Soc., 68 (1950), 28–46 | DOI
[56] J. von Neumann, Mathematische Grundlagen der Quantenmechanik, Dover Publ., N.Y., 1943; First edition, Springer-Verlag, Heidelberg, 1932
[57] M. Ozawa, “Boolean valued interpretation of Hilbert space theory”, J. Math. Soc. Japan, 35:4 (1983), 609–627 | DOI
[58] M. Ozawa, “A classification of type I $AW^*$-algebras and Boolean valued analysis”, J. Math. Soc. Japan, 36:4 (1984), 589–608 | DOI
[59] M. Ozawa, “Boolean valued interpretation of Banach space theory and module structure of von Neumann algebras”, Nagoya Math. J., 117 (1990), 1–36
[60] M. Sarwar, M. Ali, “On intuitionistic fuzzy $h$-ideals in $h$-hemiregular hemirings and $h^*$-duo-hemirings”, Eurasian Math. J., 3:4 (2012), 111–136
[61] H. H. Schaefer, Banach Lattices and Positive Operators, Springer-Verlag, Berlin etc., 1974
[62] H. H. Schaefer, Aspects of Banach lattices, MAA Stud. Math., ed. R. C. Bartle, Math. Asoc. of America, Washington, 1980
[63] H.-U. Schwarz, Banach Lattices and Operators, Teubner, Leipzig, 1984
[64] D. S. Scott, “Boolean-Valued Models for Set Theory”, Mimeographed notes for the 1967 American Math. Soc. Symposium on axiomatic set theory, 1967
[65] D. S. Scott, “Boolean-Valued Models and Nonstandard Analysis”, Applications of Model Theory to Algebra, Analysis, and Probability, ed. Luxemburg W., Holt, Rinehart, and Winston, 1969, 87–92
[66] Z. Semadeni, Banach Spaces of Continuous Functions, v. 1, Polish Sci. Publ., Warszawa, 1971
[67] R. Solovay, S. Tennenbaum, “Iterated Cohen extensions and Souslin's problem”, Ann. Math., 94:2 (1972), 201–245 | DOI
[68] M. H. Stone, “Boundedness properties in function lattices”, Can. J. Math., 1 (1949), 176–186 | DOI
[69] G. Takeuti, Two Applications of Logic to Mathematics, Iwanami and Princeton Univ. Press, Tokyo–Princeton, 1978
[70] G. Takeuti, “A transfer principle in harmonic analysis”, J. Symbolic Logic, 44:3 (1979), 417–440 | DOI
[71] G. Takeuti, “Boolean valued analysis”, Appl. of Sheaves, Proc. Res. Sympos. Appl. Sheaf Theory to Logic, Algebra and Anal. (Univ. Durham, Durham, 1977), Lect. Notes in Math., 753, Springer-Verlag, Berlin etc., 1979, 714–731 | DOI
[72] G. Takeuti, “Quantum Set Theory”, Current Issues in Quantum Logic, eds. E. Beltrametti, B. C. van Frassen, Plenum, N.Y., 1981, 303–322 | DOI
[73] G. Takeuti, W. M. Zaring, Axiomatic set Theory, Springer-Verlag, N.Y., 1973
[74] G. Takeuti, S. Titani, “Intuitionistic fuzzy logic and intuitionistic fuzzy set theory”, J. Symbolic Logic, 49:3 (1984), 851–866 | DOI
[75] G. Takeuti, S. Titani, “Fuzzy logic and fuzzy set theory”, Arch. Math. Logic, 32 (1992), 1–32 | DOI
[76] P. Vopȩnka, “General theory of $\nabla$-models”, Comment. Math. Univ. Carolin, 8:1 (1967), 147–170
[77] B. Z. Vulikh, Introduction to the Theory of Partially Ordered Spaces, Fizmatgiz, M., 1961 (in Russian)
[78] A. J. Weidner, “Fuzzy sets and Boolean-valued universes”, Fuzzy Sets and Systems, 6 (1981), 61–72 | DOI
[79] A. W. Wickstead, “Relatively central operators on Archimedean vector lattices”, Proc. Roy. Irish Acad. Sect. A, 80:2 (1980), 191–208
[80] G. Wittstock, “Eine Bemerkung über Tensorprodukte von Banachverbande”, Arch. Math., 25 (1974), 627–634 | DOI
[81] A. C. Zaanen, Riesz Spaces, v. 2, North-Holland, Amsterdam etc., 1983
[82] L. A. Zadeh, “Fuzzy sets”, Information and Control, 8:3 (1965), 338–353 | DOI
[83] J.-W. Zhang, “A unified treatment of fuzzy set theory and Boolean valued set theory fuzzy set structures and normal fuzzy set structures”, J. Math. Anal. Appl., 76:1 (1980), 297–301 | DOI
[84] J.-W. Zhang, “Between fuzzy set theory and Boolean valued set theory”, Fuzzy Information and Decision Processes, North-Holland, Amsterdam–N.Y., 1982, 143–147