Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2014_5_3_a2, author = {A. Izgi}, title = {Rate of approximation by modified {Gamma-Taylor} operators}, journal = {Eurasian mathematical journal}, pages = {46--57}, publisher = {mathdoc}, volume = {5}, number = {3}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2014_5_3_a2/} }
A. Izgi. Rate of approximation by modified Gamma-Taylor operators. Eurasian mathematical journal, Tome 5 (2014) no. 3, pp. 46-57. http://geodesic.mathdoc.fr/item/EMJ_2014_5_3_a2/
[1] Theory of approximation, Translated by Hymann, Frederick Ungar Publishing Co., New York, 1967, 208–226 (in English)
[2] O. Agratini, “On class of linear positive bivariate operators of King”, Studia Univ. “Babeş-Bolyai”, Mathematica, L1(1):4 (2006), 13–22
[3] C. Brezinski, “Convergence acceleration during 20-th century”, J. Comput. Appl. Math., 122 (2000), 1–21 | DOI
[4] Math. Notes, 20:5–6 (1976), 996–998
[5] A. D. Gadzhiev, I. Efendiev, E. Ibikli, “Generalized Bernstein–Chlodowsky polynomials”, Rocky Mt. J. Math., 28:4 (1988), 1267–1277
[6] N. Ispir, “On modified Baskakov operators on weighted spaces”, Turk. J. Math., 26:3 (2001), 355–365
[7] N. Ispir, C. Atakut, “Approximation by modified Szass–Mirakjan operators on weighted spaces”, Proc. Indian. Ac. Sci. (Math. Sci.), 112:4 (2002), 571–578 | DOI
[8] A. Izgi, I. Buyukyazici, “Approximation on unbounded interval and order of approximation”, Kastamonu Eǧitim dergisi, II:2 (2003), 451–456 (in Turkish)
[9] A. Izgi, “Order of approximation of functions in two variables by new type Gamma operators”, General Mathematics, 17:1 (2009), 23–32
[10] A. Izgi, “Voronovskaya type asymptotic approximation by modified Gamma operators”, Appl. Math. Comp., 217 (2011), 8061–8067 | DOI
[11] A. Izgi, “Approximation of $L_p$-integrable functions by Gamma type operators”, J. Anal. Comp. (to appear)
[12] H. Karsl\i, V. Gupta, A. Izgi, “Rate of pointwise convergence of a new kind of Gamma operators for functions of bounded variation”, Appl. Math. Letters, 22:4 (2009), 505–510 | DOI
[13] H. Karslı, “Rate of convergence of new Gamma type operators for functions with derivatives of bounded variation”, Math. Comp. Modelling, 45 (2007), 617–624 | DOI
[14] H. Karsl\i, M. A. Ozarslan, “Direct local and global approximation results for operators of Gamma type”, Hacettepe J. Math. Stat., 39:2 (2010), 241–253
[15] J. P. King, “Positive linear operators which preserve $x^2$”, Acta Math. Hungar., 99:3 (2003), 203–208 | DOI
[16] G. H. Kirov, “A generalization of the Bernstein polynomials”, Math. Balkanica (New Ser.), 6:2 (1992), 147–153
[17] A. Lupas, M. Muller, “Approximation Seigenschaften der Gamma operatören”, Math. Zeit., 98 (1967), 208–226 (in German) | DOI
[18] S. M. Mazhar, “Approximation by positive operators on infinite and finite intervals”, Mathematica Balkanica, 5:2 (1991), 99–104
[19] L. Rempulska, K. Tomczzak, “Approximation by certain linear operators preserving $x^2$”, Turk. J. Math., 32 (2008), 1–11
[20] M. Spivak, Calculus, Second Edition, Publish or Perish. Inc., 1980
[21] B. S. Theodore, Ho Hsu, A non-linear transformation for sequences and integrals, Thesis master science, Graduate Faculty of the Texas Thechnological College, 1968