Rate of approximation by modified Gamma-Taylor operators
Eurasian mathematical journal, Tome 5 (2014) no. 3, pp. 46-57.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider the following modification of the Gamma operators which were first introduced in [8] (see [17], [18] and [8] respectively) $$ A_n(f; x)=\int_0^\infty K_n(x, t)f(t)dt $$ where $$ K_n(x, t)=\frac{(2n+3)!}{n!(n+2)!}\frac{t^nx^{n+3}}{(x+t)^{2n+4}}, \quad x, t\in(0, \infty), $$ and the following modified Gamma-Taylor operators $$ A_{n,r}(f;x)=\int_0^\infty K_n(x, t)\left(\sum_{i=0}^r\frac{f^{(i)}(t)}{i!}(x-t)^i\right)dt. $$ We establish some approximation properties of these operators. At the end of the paper we also present some graphs allowing to compare the rate of approximation of $f$ by $A_n(f; x)$ and $A_{n,r}(f; x)$ for certain $n$$r$ and $x$.
@article{EMJ_2014_5_3_a2,
     author = {A. Izgi},
     title = {Rate of approximation by modified {Gamma-Taylor} operators},
     journal = {Eurasian mathematical journal},
     pages = {46--57},
     publisher = {mathdoc},
     volume = {5},
     number = {3},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2014_5_3_a2/}
}
TY  - JOUR
AU  - A. Izgi
TI  - Rate of approximation by modified Gamma-Taylor operators
JO  - Eurasian mathematical journal
PY  - 2014
SP  - 46
EP  - 57
VL  - 5
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2014_5_3_a2/
LA  - en
ID  - EMJ_2014_5_3_a2
ER  - 
%0 Journal Article
%A A. Izgi
%T Rate of approximation by modified Gamma-Taylor operators
%J Eurasian mathematical journal
%D 2014
%P 46-57
%V 5
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2014_5_3_a2/
%G en
%F EMJ_2014_5_3_a2
A. Izgi. Rate of approximation by modified Gamma-Taylor operators. Eurasian mathematical journal, Tome 5 (2014) no. 3, pp. 46-57. http://geodesic.mathdoc.fr/item/EMJ_2014_5_3_a2/

[1] Theory of approximation, Translated by Hymann, Frederick Ungar Publishing Co., New York, 1967, 208–226 (in English)

[2] O. Agratini, “On class of linear positive bivariate operators of King”, Studia Univ. “Babeş-Bolyai”, Mathematica, L1(1):4 (2006), 13–22

[3] C. Brezinski, “Convergence acceleration during 20-th century”, J. Comput. Appl. Math., 122 (2000), 1–21 | DOI

[4] Math. Notes, 20:5–6 (1976), 996–998

[5] A. D. Gadzhiev, I. Efendiev, E. Ibikli, “Generalized Bernstein–Chlodowsky polynomials”, Rocky Mt. J. Math., 28:4 (1988), 1267–1277

[6] N. Ispir, “On modified Baskakov operators on weighted spaces”, Turk. J. Math., 26:3 (2001), 355–365

[7] N. Ispir, C. Atakut, “Approximation by modified Szass–Mirakjan operators on weighted spaces”, Proc. Indian. Ac. Sci. (Math. Sci.), 112:4 (2002), 571–578 | DOI

[8] A. Izgi, I. Buyukyazici, “Approximation on unbounded interval and order of approximation”, Kastamonu Eǧitim dergisi, II:2 (2003), 451–456 (in Turkish)

[9] A. Izgi, “Order of approximation of functions in two variables by new type Gamma operators”, General Mathematics, 17:1 (2009), 23–32

[10] A. Izgi, “Voronovskaya type asymptotic approximation by modified Gamma operators”, Appl. Math. Comp., 217 (2011), 8061–8067 | DOI

[11] A. Izgi, “Approximation of $L_p$-integrable functions by Gamma type operators”, J. Anal. Comp. (to appear)

[12] H. Karsl\i, V. Gupta, A. Izgi, “Rate of pointwise convergence of a new kind of Gamma operators for functions of bounded variation”, Appl. Math. Letters, 22:4 (2009), 505–510 | DOI

[13] H. Karslı, “Rate of convergence of new Gamma type operators for functions with derivatives of bounded variation”, Math. Comp. Modelling, 45 (2007), 617–624 | DOI

[14] H. Karsl\i, M. A. Ozarslan, “Direct local and global approximation results for operators of Gamma type”, Hacettepe J. Math. Stat., 39:2 (2010), 241–253

[15] J. P. King, “Positive linear operators which preserve $x^2$”, Acta Math. Hungar., 99:3 (2003), 203–208 | DOI

[16] G. H. Kirov, “A generalization of the Bernstein polynomials”, Math. Balkanica (New Ser.), 6:2 (1992), 147–153

[17] A. Lupas, M. Muller, “Approximation Seigenschaften der Gamma operatören”, Math. Zeit., 98 (1967), 208–226 (in German) | DOI

[18] S. M. Mazhar, “Approximation by positive operators on infinite and finite intervals”, Mathematica Balkanica, 5:2 (1991), 99–104

[19] L. Rempulska, K. Tomczzak, “Approximation by certain linear operators preserving $x^2$”, Turk. J. Math., 32 (2008), 1–11

[20] M. Spivak, Calculus, Second Edition, Publish or Perish. Inc., 1980

[21] B. S. Theodore, Ho Hsu, A non-linear transformation for sequences and integrals, Thesis master science, Graduate Faculty of the Texas Thechnological College, 1968