Rate of approximation by modified Gamma-Taylor operators
Eurasian mathematical journal, Tome 5 (2014) no. 3, pp. 46-57

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider the following modification of the Gamma operators which were first introduced in [8] (see [17], [18] and [8] respectively) $$ A_n(f; x)=\int_0^\infty K_n(x, t)f(t)dt $$ where $$ K_n(x, t)=\frac{(2n+3)!}{n!(n+2)!}\frac{t^nx^{n+3}}{(x+t)^{2n+4}}, \quad x, t\in(0, \infty), $$ and the following modified Gamma-Taylor operators $$ A_{n,r}(f;x)=\int_0^\infty K_n(x, t)\left(\sum_{i=0}^r\frac{f^{(i)}(t)}{i!}(x-t)^i\right)dt. $$ We establish some approximation properties of these operators. At the end of the paper we also present some graphs allowing to compare the rate of approximation of $f$ by $A_n(f; x)$ and $A_{n,r}(f; x)$ for certain $n$$r$ and $x$.
@article{EMJ_2014_5_3_a2,
     author = {A. Izgi},
     title = {Rate of approximation by modified {Gamma-Taylor} operators},
     journal = {Eurasian mathematical journal},
     pages = {46--57},
     publisher = {mathdoc},
     volume = {5},
     number = {3},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2014_5_3_a2/}
}
TY  - JOUR
AU  - A. Izgi
TI  - Rate of approximation by modified Gamma-Taylor operators
JO  - Eurasian mathematical journal
PY  - 2014
SP  - 46
EP  - 57
VL  - 5
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2014_5_3_a2/
LA  - en
ID  - EMJ_2014_5_3_a2
ER  - 
%0 Journal Article
%A A. Izgi
%T Rate of approximation by modified Gamma-Taylor operators
%J Eurasian mathematical journal
%D 2014
%P 46-57
%V 5
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2014_5_3_a2/
%G en
%F EMJ_2014_5_3_a2
A. Izgi. Rate of approximation by modified Gamma-Taylor operators. Eurasian mathematical journal, Tome 5 (2014) no. 3, pp. 46-57. http://geodesic.mathdoc.fr/item/EMJ_2014_5_3_a2/