Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2014_5_3_a1, author = {Ts. Batbold and Y. Sawano}, title = {Decompositions for local {Morrey} spaces}, journal = {Eurasian mathematical journal}, pages = {9--45}, publisher = {mathdoc}, volume = {5}, number = {3}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2014_5_3_a1/} }
Ts. Batbold; Y. Sawano. Decompositions for local Morrey spaces. Eurasian mathematical journal, Tome 5 (2014) no. 3, pp. 9-45. http://geodesic.mathdoc.fr/item/EMJ_2014_5_3_a1/
[1] D. R. Adams, “A note on Riesz potentials”, Duke Math. J., 42 (1975), 765–778 | DOI
[2] A. Gogatishvili, R. Mustafayev, “New pre-dual space of Morrey space”, J. Math. Anal. Appl., 397:2 (2013), 678–692 | DOI
[3] L. Grafakos, Classical Fourier Analysis, Graduate Texts in Mathematics, 249, Second edition, Springer, New York, 2008, xvi+489 pp.
[4] D. D. Haroske, L. Skrzypczak, “Continuous embeddings of Besov–Morrey function spaces”, Acta Math. Sin., 28:7 (2012), 1307–1328 | DOI
[5] D. D. Haroske, L. Skrzypczak, “Embeddings of Besov–Morrey spaces on bounded domains”, Studia Math., 218:2 (2013), 119–144 | DOI
[6] L. Hedberg, Y. Netrusov, “An axiomatic approach to function spaces, spectral synthesis, and Luzin approximation”, Mem. Amer. Math. Soc., 188, 2007, vi+97
[7] K. P. Ho, “Atomic decomposition of Hardy spaces and characterization of BMO via Banach function spaces”, Anal. Math., 38:3 (2012), 173–185 | DOI
[8] K. P. Ho, “Vector-valued singular integral operators on Morrey type spaces and variable Triebel–Lizorkin–Morrey space”, Ann. Acad. Sci. Fenn. Math., 37:2 (2012), 375–406
[9] T. Iida, Y. Sawano, H. Tanaka, “Atomic decomposition for Morrey spaces”, Z. Anal. Anwend., 33:2 (2014), 149–170 | DOI
[10] H. Jia, H. Wang, “Decomposition of Hardy–Morrey spaces”, J. Math. Anal. Appl., 354:1 (2009), 99–110 | DOI
[11] E. A. Kalita, “Dual Morrey spaces”, Doklady Ac. Sci. Russia, 361:4 (1998), 447–449
[12] N. Kruglyak, E. A. Kuznetsov, “Smooth and nonsmooth Calderon–Zygmund type decompositions for Morrey spaces”, J. Fourier Anal. Appl., 11:6 (2005), 697–714 | DOI
[13] Y. Liang, Y. Sawano, T. Ullrich, D. Yang, W. Yuan, “New characterizations of Besov–Triebel–Lizorkin–Hausdorff spaces including coorbits and wavelets”, J. Fourier Anal. Appl., 18:5 (2012), 1067–1111 | DOI
[14] Y. Liang, Y. Sawano, T. Ullrich, D. Yang, W. Yuan, “A new framework for generalized Besov-type and Triebel–Lizorkin-type spaces”, Dissertationes Math., 489 (2013), 114 | DOI
[15] J. Lindenstrauss, L. Tzafriri, Classical Banach Spaces, v. I, II, Springer-Verlag, Berlin–Hedelberg, 1996
[16] A. Mazzucato, “Decomposition of Besov–Morrey spaces”, Harmonic analysis at Mount Holyoke (South Hadley, MA, 2001), Contemp. Math., 320, Amer. Math. Soc., Providence, RI, 2003, 279–294 | DOI
[17] Y. Mizuta, E. Nakai, Y. Sawano, T. Shimomura, “Littlewood–Paley theory for variable exponent Lebesgue spaces and Gagliardo–Nirenberg inequality for Riesz potentials”, J. Math. Soc. Japan, 65:2 (2013), 633–670 | DOI
[18] C. B. Morrey (Jr.), “On the solutions of quasi-linear elliptic partial differential equations”, Trans. Amer. Math. Soc., 43:1 (1938), 126–166 | DOI
[19] E. Nakai, “Hardy–Littlewood maximal operator, singular integral operators, and the Riesz potential on generalized Morrey spaces”, Math. Nachr., 166 (1994), 95–103 | DOI
[20] E. Nakai, “Generalized fractional integral operator on Orlicz–Morrey spaces”, Banach and Function spaces (Kitakyushu, 2003), Yokohama Publ., Yokohama, 2004, 323–333
[21] E. Nakai, “Orlicz–Morrey spaces and Hardy–Littlewood maximal function”, Studia Math., 188 (2008), 193–221 | DOI
[22] E. Nakai, “Orlicz–Morrey spaces and their preduals”, Banach and Function spaces (Kitakyushu, 2009), Yokohama Publ., Yokohama, 2011, 187–205
[23] E. Nakai, Y. Sawano, “Hardy spaces with variable exponents and generalized Campanato spaces”, J. Funct. Anal., 262 (2012), 3665–3748 | DOI
[24] E. Nakai, Y. Sawano, “Orlicz–Hardy spaces and their duals”, Sci. China Math., 57:5 (2014), 903–962 | DOI
[25] first edition, Springer-Verlage, Berlin–Heidelberg–New York, 1975
[26] M. Plancherel, M. G. Pólya, “Fonctions entières et intégrales de fourier multiples”, Comment. Math. Helv., 10:1 (1937), 110–163 (in French) | DOI
[27] J. Peetre, “On the theory of $\mathcal{L}_{p,\lambda}$ spaces”, J. Funct. Anal., 4 (1969), 71–87 | DOI
[28] H. Rauhut, T. Ullrich, “Generalized coorbit space theory and inhomogeneous function spaces of Besov–Lizorkin–Triebel type”, J. Funct. Anal., 260 (2011), 3299–3362 | DOI
[29] M. Rosenthal, “Local means, wavelet bases and wavelet isomorphisms in Besov–Morrey and Triebel–Lizorkin–Morrey spaces”, Math. Nachr., 286:1 (2013), 59–87 | DOI
[30] Y. Sawano, “Wavelet characterization of Besov–Morrey and Triebel–Lizorkin–Morrey spaces”, Funct. Approx. Comment. Math., 38:1 (2008), 93–107 | DOI
[31] Y. Sawano, “A note on Besov–Morrey spaces and Triebel–Lizorkin–Morrey spaces”, Acta Math. Sin. (Engl. Ser.), 25 (2009), 1223–1242 | DOI
[32] Y. Sawano, “Besov–Morrey spaces and Triebel–Lizorkin–Morrey spaces on domains in $\mathbf{R}^n$”, Math. Nachr., 283:10 (2010), 1–32 | DOI
[33] Y. Sawano, “Atomic decompositions of Hardy spaces with variable exponents and its application to bounded linear operators”, Integral Equations Operator Theory, 77:1 (2013), 123–148 | DOI
[34] Y. Sawano, S. Sugano, H. Tanaka, “Orlicz–Morrey spaces and fractional operators”, Potential Anal., 36:4 (2012), 517–556 | DOI
[35] Y. Sawano, S. Sugano, H. Tanaka, “Generalized fractional integral operators and fractional maximal operators in the framework of Morrey spaces”, Trans. Amer. Math. Soc., 363:12 (2011), 6481–6503 | DOI
[36] Y. Sawano, H. Tanaka, “Morrey spaces for non-doubling measures”, Acta Math. Sinica, 21:6 (2005), 1535–1544 | DOI
[37] Y. Sawano, H. Tanaka, “Decompositions of Besov–Morrey spaces and Triebel–Lizorkin–Morrey spaces”, Math. Z., 257:4 (2007), 871–905 | DOI
[38] Y. Sawano, D. Yang, W. Yuan, “New applications of Besov-type and Triebel–Lizorkin-type paces”, J. Math. Anal. Appl., 363 (2010), 73–85 | DOI
[39] E. M. Stein, Harmonic Analysis, real-variable methods, orthogonality, and oscillatory integrals, Princeton University Press, Princeton, NJ, 1993
[40] L. Tang, J. Xu, “Some properties of Morrey type Besov–Triebel spaces”, Math. Nachr., 278:7–8 (2005), 904–917 | DOI
[41] X. Tolsa, “$BMO$, $H^1$, and Calderon–Zygmund operators for non doubling measures”, Math. Ann., 319 (2001), 89–149 | DOI
[42] X. Tolsa, “Littlewood–Paley theory and the $T(1)$ theorem with non-doubling measures”, Adv. Math., 164:1 (2001), 57–116 | DOI
[43] H. Triebel, Theory of function spaces, Birkhauser, 1983
[44] T. Ullrich, “Continuous characterizations of Besov–Lizorkin–Triebel spaces and new interpretations as coorbits”, J. Funct. Space Appl., 163213, 47 pp.
[45] D. Yang, W. Yuan, “A new class of function spaces connecting Triebel–Lizorkin spaces and $Q$ spaces”, J. Funct. Anal., 255 (2008), 2760–2809 | DOI
[46] D. Yang, W. Yuan, “New Besov-type spaces and Triebel–Lizorkin-type spaces including $Q$ spaces”, Math. Z., 265 (2010), 451–480 | DOI
[47] D. Yang, W. Yuan, “Characterizations of Besov-type and Triebel–Lizorkin-type spaces via maximal functions and local means”, Nonlinear Anal., 73 (2010), 3805–3820 | DOI
[48] D. Yang, W. Yuan, “Dual properties of Triebel–Lizorkin-type spaces and their applications”, Z. Anal. Anwend., 30 (2011), 29–58 | DOI
[49] D. Yang, W. Yuan, “Relations among Besov-type spaces, Triebel–Lizorkin-type spaces and generalized Carleson measure spaces”, Appl. Anal., 92:3 (2013), 549–561 | DOI
[50] W. Yuan, Y. Sawano, D. Yang, “Decompositions of Besov–Hausdorff and Triebel–Lizorkin–Hausdorff spaces and their applications”, J. Math. Anal. Appl., 369 (2010), 736–757 | DOI
[51] W. Yuan, W. Sickel, D. Yang, Morrey and Campanato Meet Besov, Lizorkin and Triebel, Lecture Notes in Mathematics, 2005, Springer-Verlag, Berlin, 2010, xi+281 pp. | DOI
[52] C. Zorko, “Morrey space”, Proc. Amer. Math. Soc., 98:4 (1986), 586–592 | DOI