Decompositions for local Morrey spaces
Eurasian mathematical journal, Tome 5 (2014) no. 3, pp. 9-45.

Voir la notice de l'article provenant de la source Math-Net.Ru

We develop and apply a decomposition theory for generic local Morrey spaces. Our results are smooth and nonsmooth decompositions, which follows from the fact that local Morrey spaces are isomorphic to local Hardy–Morrey spaces and local Triebel–Lizorkin–Morrey spaces in the generic case. As an application of our results, we consider a bilinear estimate for the fractional integral operators.
@article{EMJ_2014_5_3_a1,
     author = {Ts. Batbold and Y. Sawano},
     title = {Decompositions for local {Morrey} spaces},
     journal = {Eurasian mathematical journal},
     pages = {9--45},
     publisher = {mathdoc},
     volume = {5},
     number = {3},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2014_5_3_a1/}
}
TY  - JOUR
AU  - Ts. Batbold
AU  - Y. Sawano
TI  - Decompositions for local Morrey spaces
JO  - Eurasian mathematical journal
PY  - 2014
SP  - 9
EP  - 45
VL  - 5
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2014_5_3_a1/
LA  - en
ID  - EMJ_2014_5_3_a1
ER  - 
%0 Journal Article
%A Ts. Batbold
%A Y. Sawano
%T Decompositions for local Morrey spaces
%J Eurasian mathematical journal
%D 2014
%P 9-45
%V 5
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2014_5_3_a1/
%G en
%F EMJ_2014_5_3_a1
Ts. Batbold; Y. Sawano. Decompositions for local Morrey spaces. Eurasian mathematical journal, Tome 5 (2014) no. 3, pp. 9-45. http://geodesic.mathdoc.fr/item/EMJ_2014_5_3_a1/

[1] D. R. Adams, “A note on Riesz potentials”, Duke Math. J., 42 (1975), 765–778 | DOI

[2] A. Gogatishvili, R. Mustafayev, “New pre-dual space of Morrey space”, J. Math. Anal. Appl., 397:2 (2013), 678–692 | DOI

[3] L. Grafakos, Classical Fourier Analysis, Graduate Texts in Mathematics, 249, Second edition, Springer, New York, 2008, xvi+489 pp.

[4] D. D. Haroske, L. Skrzypczak, “Continuous embeddings of Besov–Morrey function spaces”, Acta Math. Sin., 28:7 (2012), 1307–1328 | DOI

[5] D. D. Haroske, L. Skrzypczak, “Embeddings of Besov–Morrey spaces on bounded domains”, Studia Math., 218:2 (2013), 119–144 | DOI

[6] L. Hedberg, Y. Netrusov, “An axiomatic approach to function spaces, spectral synthesis, and Luzin approximation”, Mem. Amer. Math. Soc., 188, 2007, vi+97

[7] K. P. Ho, “Atomic decomposition of Hardy spaces and characterization of BMO via Banach function spaces”, Anal. Math., 38:3 (2012), 173–185 | DOI

[8] K. P. Ho, “Vector-valued singular integral operators on Morrey type spaces and variable Triebel–Lizorkin–Morrey space”, Ann. Acad. Sci. Fenn. Math., 37:2 (2012), 375–406

[9] T. Iida, Y. Sawano, H. Tanaka, “Atomic decomposition for Morrey spaces”, Z. Anal. Anwend., 33:2 (2014), 149–170 | DOI

[10] H. Jia, H. Wang, “Decomposition of Hardy–Morrey spaces”, J. Math. Anal. Appl., 354:1 (2009), 99–110 | DOI

[11] E. A. Kalita, “Dual Morrey spaces”, Doklady Ac. Sci. Russia, 361:4 (1998), 447–449

[12] N. Kruglyak, E. A. Kuznetsov, “Smooth and nonsmooth Calderon–Zygmund type decompositions for Morrey spaces”, J. Fourier Anal. Appl., 11:6 (2005), 697–714 | DOI

[13] Y. Liang, Y. Sawano, T. Ullrich, D. Yang, W. Yuan, “New characterizations of Besov–Triebel–Lizorkin–Hausdorff spaces including coorbits and wavelets”, J. Fourier Anal. Appl., 18:5 (2012), 1067–1111 | DOI

[14] Y. Liang, Y. Sawano, T. Ullrich, D. Yang, W. Yuan, “A new framework for generalized Besov-type and Triebel–Lizorkin-type spaces”, Dissertationes Math., 489 (2013), 114 | DOI

[15] J. Lindenstrauss, L. Tzafriri, Classical Banach Spaces, v. I, II, Springer-Verlag, Berlin–Hedelberg, 1996

[16] A. Mazzucato, “Decomposition of Besov–Morrey spaces”, Harmonic analysis at Mount Holyoke (South Hadley, MA, 2001), Contemp. Math., 320, Amer. Math. Soc., Providence, RI, 2003, 279–294 | DOI

[17] Y. Mizuta, E. Nakai, Y. Sawano, T. Shimomura, “Littlewood–Paley theory for variable exponent Lebesgue spaces and Gagliardo–Nirenberg inequality for Riesz potentials”, J. Math. Soc. Japan, 65:2 (2013), 633–670 | DOI

[18] C. B. Morrey (Jr.), “On the solutions of quasi-linear elliptic partial differential equations”, Trans. Amer. Math. Soc., 43:1 (1938), 126–166 | DOI

[19] E. Nakai, “Hardy–Littlewood maximal operator, singular integral operators, and the Riesz potential on generalized Morrey spaces”, Math. Nachr., 166 (1994), 95–103 | DOI

[20] E. Nakai, “Generalized fractional integral operator on Orlicz–Morrey spaces”, Banach and Function spaces (Kitakyushu, 2003), Yokohama Publ., Yokohama, 2004, 323–333

[21] E. Nakai, “Orlicz–Morrey spaces and Hardy–Littlewood maximal function”, Studia Math., 188 (2008), 193–221 | DOI

[22] E. Nakai, “Orlicz–Morrey spaces and their preduals”, Banach and Function spaces (Kitakyushu, 2009), Yokohama Publ., Yokohama, 2011, 187–205

[23] E. Nakai, Y. Sawano, “Hardy spaces with variable exponents and generalized Campanato spaces”, J. Funct. Anal., 262 (2012), 3665–3748 | DOI

[24] E. Nakai, Y. Sawano, “Orlicz–Hardy spaces and their duals”, Sci. China Math., 57:5 (2014), 903–962 | DOI

[25] first edition, Springer-Verlage, Berlin–Heidelberg–New York, 1975

[26] M. Plancherel, M. G. Pólya, “Fonctions entières et intégrales de fourier multiples”, Comment. Math. Helv., 10:1 (1937), 110–163 (in French) | DOI

[27] J. Peetre, “On the theory of $\mathcal{L}_{p,\lambda}$ spaces”, J. Funct. Anal., 4 (1969), 71–87 | DOI

[28] H. Rauhut, T. Ullrich, “Generalized coorbit space theory and inhomogeneous function spaces of Besov–Lizorkin–Triebel type”, J. Funct. Anal., 260 (2011), 3299–3362 | DOI

[29] M. Rosenthal, “Local means, wavelet bases and wavelet isomorphisms in Besov–Morrey and Triebel–Lizorkin–Morrey spaces”, Math. Nachr., 286:1 (2013), 59–87 | DOI

[30] Y. Sawano, “Wavelet characterization of Besov–Morrey and Triebel–Lizorkin–Morrey spaces”, Funct. Approx. Comment. Math., 38:1 (2008), 93–107 | DOI

[31] Y. Sawano, “A note on Besov–Morrey spaces and Triebel–Lizorkin–Morrey spaces”, Acta Math. Sin. (Engl. Ser.), 25 (2009), 1223–1242 | DOI

[32] Y. Sawano, “Besov–Morrey spaces and Triebel–Lizorkin–Morrey spaces on domains in $\mathbf{R}^n$”, Math. Nachr., 283:10 (2010), 1–32 | DOI

[33] Y. Sawano, “Atomic decompositions of Hardy spaces with variable exponents and its application to bounded linear operators”, Integral Equations Operator Theory, 77:1 (2013), 123–148 | DOI

[34] Y. Sawano, S. Sugano, H. Tanaka, “Orlicz–Morrey spaces and fractional operators”, Potential Anal., 36:4 (2012), 517–556 | DOI

[35] Y. Sawano, S. Sugano, H. Tanaka, “Generalized fractional integral operators and fractional maximal operators in the framework of Morrey spaces”, Trans. Amer. Math. Soc., 363:12 (2011), 6481–6503 | DOI

[36] Y. Sawano, H. Tanaka, “Morrey spaces for non-doubling measures”, Acta Math. Sinica, 21:6 (2005), 1535–1544 | DOI

[37] Y. Sawano, H. Tanaka, “Decompositions of Besov–Morrey spaces and Triebel–Lizorkin–Morrey spaces”, Math. Z., 257:4 (2007), 871–905 | DOI

[38] Y. Sawano, D. Yang, W. Yuan, “New applications of Besov-type and Triebel–Lizorkin-type paces”, J. Math. Anal. Appl., 363 (2010), 73–85 | DOI

[39] E. M. Stein, Harmonic Analysis, real-variable methods, orthogonality, and oscillatory integrals, Princeton University Press, Princeton, NJ, 1993

[40] L. Tang, J. Xu, “Some properties of Morrey type Besov–Triebel spaces”, Math. Nachr., 278:7–8 (2005), 904–917 | DOI

[41] X. Tolsa, “$BMO$, $H^1$, and Calderon–Zygmund operators for non doubling measures”, Math. Ann., 319 (2001), 89–149 | DOI

[42] X. Tolsa, “Littlewood–Paley theory and the $T(1)$ theorem with non-doubling measures”, Adv. Math., 164:1 (2001), 57–116 | DOI

[43] H. Triebel, Theory of function spaces, Birkhauser, 1983

[44] T. Ullrich, “Continuous characterizations of Besov–Lizorkin–Triebel spaces and new interpretations as coorbits”, J. Funct. Space Appl., 163213, 47 pp.

[45] D. Yang, W. Yuan, “A new class of function spaces connecting Triebel–Lizorkin spaces and $Q$ spaces”, J. Funct. Anal., 255 (2008), 2760–2809 | DOI

[46] D. Yang, W. Yuan, “New Besov-type spaces and Triebel–Lizorkin-type spaces including $Q$ spaces”, Math. Z., 265 (2010), 451–480 | DOI

[47] D. Yang, W. Yuan, “Characterizations of Besov-type and Triebel–Lizorkin-type spaces via maximal functions and local means”, Nonlinear Anal., 73 (2010), 3805–3820 | DOI

[48] D. Yang, W. Yuan, “Dual properties of Triebel–Lizorkin-type spaces and their applications”, Z. Anal. Anwend., 30 (2011), 29–58 | DOI

[49] D. Yang, W. Yuan, “Relations among Besov-type spaces, Triebel–Lizorkin-type spaces and generalized Carleson measure spaces”, Appl. Anal., 92:3 (2013), 549–561 | DOI

[50] W. Yuan, Y. Sawano, D. Yang, “Decompositions of Besov–Hausdorff and Triebel–Lizorkin–Hausdorff spaces and their applications”, J. Math. Anal. Appl., 369 (2010), 736–757 | DOI

[51] W. Yuan, W. Sickel, D. Yang, Morrey and Campanato Meet Besov, Lizorkin and Triebel, Lecture Notes in Mathematics, 2005, Springer-Verlag, Berlin, 2010, xi+281 pp. | DOI

[52] C. Zorko, “Morrey space”, Proc. Amer. Math. Soc., 98:4 (1986), 586–592 | DOI