The Rainwater--Simons weak convergence theorem for the Brown associated norm
Eurasian mathematical journal, Tome 5 (2014) no. 2, pp. 126-131.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Rainwater–Simons weak convergence theorem is extended to the convergence with respect to the associated norm (in the sense of Brown), the latter proved useful, inter alia, in testing the membership of a point to the Banach–Mazur hull of two points, which is the intersection of all closed balls containing these points.
@article{EMJ_2014_5_2_a5,
     author = {A. R. Alimov},
     title = {The {Rainwater--Simons} weak convergence theorem for the {Brown} associated norm},
     journal = {Eurasian mathematical journal},
     pages = {126--131},
     publisher = {mathdoc},
     volume = {5},
     number = {2},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2014_5_2_a5/}
}
TY  - JOUR
AU  - A. R. Alimov
TI  - The Rainwater--Simons weak convergence theorem for the Brown associated norm
JO  - Eurasian mathematical journal
PY  - 2014
SP  - 126
EP  - 131
VL  - 5
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2014_5_2_a5/
LA  - en
ID  - EMJ_2014_5_2_a5
ER  - 
%0 Journal Article
%A A. R. Alimov
%T The Rainwater--Simons weak convergence theorem for the Brown associated norm
%J Eurasian mathematical journal
%D 2014
%P 126-131
%V 5
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2014_5_2_a5/
%G en
%F EMJ_2014_5_2_a5
A. R. Alimov. The Rainwater--Simons weak convergence theorem for the Brown associated norm. Eurasian mathematical journal, Tome 5 (2014) no. 2, pp. 126-131. http://geodesic.mathdoc.fr/item/EMJ_2014_5_2_a5/

[1] A. R. Alimov, “Connectedness of suns in the space $c_0$”, Izvestiya: Mathematics, 69:4 (2005), 651–665 | DOI | MR | Zbl

[2] A. R. Alimov, “Monotone path-connectedness of Chebyshev sets in the space $C(Q)$”, Sb. Math., 197:9 (2006), 1259–1272 | DOI | MR | Zbl

[3] A. R. Alimov, “Monotone path-connectedness and solarity of Menger-connected sets in Banach spaces”, Izvestiya: Mathematics, 78:4 (2014), 3–18 | DOI | MR

[4] A. Avilés, G. Plebanek, J. Rodríguez, “A weak$^*$ separable $C(K)^*$ space whose unit ball is not weak$^*$ separable”, Trans. Amer. Math. Soc., 366 (2014), 4733–4753 | DOI | MR | Zbl

[5] A. L. Brown, “Suns in normed linear spaces which are finite dimensional”, Math. Ann., 279 (1987), 87–101 | DOI | MR | Zbl

[6] E. N. Dancer, B. Sims, “Weak star separability”, Bull. Austral. Math. Soc., 20 (1979), 253–257 | DOI | MR | Zbl

[7] M. Fabian, P. Habala, P. Hájek, V. Montesinos, V. Zizler, Banach Space Theory. The Basis for Linear and Nonlinear Analysis, Springer, New York, 2011 | MR

[8] C. Franchetti, S. Roversi, Suns, M-connected sets and P-acyclic sets in Banach spaces, Preprint No 50139, Instituto di Matematica Applicata “G. Sansone”, 1988, 29 pp.

[9] J.-D. Hardtke, “Rainwater–Simons type convergence theorems for generalized convergence methods”, Acta Comm. Univ. Tartuensis Math., 14 (2010), 65–74 | MR | Zbl

[10] O. F. K. Kalenda, “$(I)$-envelopes of unit balls and James' characterization of reflexivity”, Studia Math., 182 (2007), 29–40 | DOI | MR | Zbl

[11] O. Nygaard, “Thick sets in Banach spaces and their properties”, Quaest. Math., 29:1 (2006), 59–72 | DOI | MR | Zbl

[12] O. Nygaard, “A remark on Rainwater's theorem”, Annales Math. Inform., 32 (2005), 125–127 | MR | Zbl