Generalized potentials of double layer in plane theory of elasticity
Eurasian mathematical journal, Tome 5 (2014) no. 2, pp. 78-125.

Voir la notice de l'article provenant de la source Math-Net.Ru

Connected with the function-theoretic approach, generalized potentials of double layer are introduced for the Lamé system of plane anisotropic elasticity theory. These potentials are constructed for the displacement vector – a solution of the Lamé system, and as well for the conjugate vector–functions describing the stress tensor. There are obtained integral representations of these solutions via potentials mentioned above. As a corollary the first and the second boundary-value problems in different classes (Hölder, Hardy, the class of functions continuous in a closed domain) are reduced to equivalent systems of the boundary Fredholm equations in corresponding spaces.
@article{EMJ_2014_5_2_a4,
     author = {A. P. Soldatov},
     title = {Generalized potentials of double layer in plane theory of elasticity},
     journal = {Eurasian mathematical journal},
     pages = {78--125},
     publisher = {mathdoc},
     volume = {5},
     number = {2},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2014_5_2_a4/}
}
TY  - JOUR
AU  - A. P. Soldatov
TI  - Generalized potentials of double layer in plane theory of elasticity
JO  - Eurasian mathematical journal
PY  - 2014
SP  - 78
EP  - 125
VL  - 5
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2014_5_2_a4/
LA  - en
ID  - EMJ_2014_5_2_a4
ER  - 
%0 Journal Article
%A A. P. Soldatov
%T Generalized potentials of double layer in plane theory of elasticity
%J Eurasian mathematical journal
%D 2014
%P 78-125
%V 5
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2014_5_2_a4/
%G en
%F EMJ_2014_5_2_a4
A. P. Soldatov. Generalized potentials of double layer in plane theory of elasticity. Eurasian mathematical journal, Tome 5 (2014) no. 2, pp. 78-125. http://geodesic.mathdoc.fr/item/EMJ_2014_5_2_a4/

[1] E. A. Abapolova, A. P. Soldatov, “Lamé system of elasticity theory in a plane orthotropic medium”, Journal of Mathematical Sciences, 157:3 (2009), 387–394 | DOI | MR | Zbl

[2] E. A. Abapolova, A. P. Soldatov, “To theory of singular integral equations on smooth contour”, Nauchn. vedomosti BelGU, 18:5(76) (2010), 6–20

[3] A. V. Alexandrov, A. P. Soldatov, “Boundary properties of iitegrals of Cauchy type: $L_p$-case”, Diff. uravn., 27:1 (1991), 3–8 | MR

[4] M. O. Bashaleyshvili, Solution of plane boundary-value problems of statics of anisotropic elactic body, Tr. Vichislitel'nogo centra AN Gruz. SSR, 3, 1962

[5] H. Begehr, Lin Wei, “A mixed-contact problem in orthotropic elasticity”, Partial diifferential equations with Real Analysis, Longman Scientific Technical, 1992, 219–239 | MR | Zbl

[6] H. Begehr, Lin Wei, “A mixed-contact problem in orthotropic elasticity”, An introductory text, Partial diifferential equations with Real Analysis, World Scientific, Singapore, 1994 | MR | Zbl

[7] A. V. Bitsadze, Boundary value problems for second order elliptic equations, M., 1966

[8] A. Douglis, “A function-theoretical approach to elliptic systems of equations in two variables”, Comm. Pure Appl. Math., 6 (1953), 259–289 | DOI | MR | Zbl

[9] A. H. England, Complex variable methods in elasticity, J. Wiley-Interscience, London–New York–Sydney–Tokyo, 1971 | MR | Zbl

[10] G. Fichera, Existence theorems in elasticity theory, M., 1974

[11] R. P. Gilbert, W. L. Wendland, “Analytic, generalized, hyper- analytic function theory and an application to elasticity”, Proc. Roy. Soc. Edinburgh Sect. A, 73 (1975), 317–371 | MR

[12] G. M. Goluzin, Geometric theory of functions of complex variable, Nauka, M., 1972

[13] I. C. Hochberg, N. I. Krupnik, Introduction to theory of one-dimensional singular equations, Shtiintsa, Kishinev, 1973

[14] V. D. Kupradze, Potential methods in the theory of elasticity, Physmathgiz, M., 1963 | Zbl

[15] S. G. Lekhnitskii, Theory of elasticity of an anisotropic body, GTITTL, M.–L., 1950

[16] E. E. Levi, “On linear elliptic partial differential equations”, Uspekhi Mat. Nauk, 1941, no. 8, 249–292

[17] N. I. Muskhelishvili, Some basic problems of the mathematical theory of elasticity, Nauka, M., 1966 | Zbl

[18] N. I. Muskhelishvili, Singular integral equations, Nauka, M., 1968 | MR | Zbl

[19] U. Rudin, Functional analysis, Mir, M., 1991 | MR

[20] A. P. Soldatov, “On the first and the second boundary-value problems for elliptic systems on the plane”, Diff. Uravn., 39:5 (2003), 674–686 | MR | Zbl

[21] A. P. Soldatov, “The Lamé system of plane anisotropic elasticity theory”, Docl. RAN, 385:2 (2002), 163–167 | MR | Zbl

[22] A. P. Soldatov, “Elliptic systems of second order in the half-plane”, Izvestiya RAN (ser. matem.), 70:6 (2006), 161–192 | DOI | MR | Zbl

[23] A. P. Soldatov, “To the theory of anisotropic plane elasticity”, Analysis by Oldenbourg Wissenschaftsverlags, 30:2 (2010), 107–117 | MR | Zbl

[24] A. P. Soldatov, “Elliptic systems of high order”, Diff. Uravn., 25:1 (1989), 136–144 | MR | Zbl

[25] A. P. Soldatov, “Hyperanalytic functions and their applications”, Modern mathematics and its applications, 15, Institute of cybernetic of Gergian Academy of Sciences, Tbilisi, 2004, 142–199 | MR

[26] A. P. Soldatov, “Hardy space of solutions of first order elliptic systems”, Dokl. RAN, 416:1 (2007), 26–30 | MR | Zbl

[27] A. P. Soldatov, “Hardy space of solutions of second order elliptic systems”, Dokl. RAN, 418:2 (2008), 162–166 | MR

[28] A. P. Soldatov, “Method of functions in boundary-value problems on plane, I. Smooth case”, Izv. AN SSSR (ser. matem.), 55:5 (1991), 1070–1100 | MR | Zbl

[29] A. P. Soldatov, O. V. Chernova, “Riemann–Hilbert problem for first order elliptic system in Hölder classes”, Nauchn. vedomosti BelGU, 17/2:13(68) (2009), 115–121

[30] A. P. Soldatov, “On representation of solutions of second order elliptic systems on the plane”, More progresses in analysis, Proceedings of the 5th International ISAAC Congress (Catania, Italy, 25–30 July 2005), v. 2, eds. H. Begehr and oth., World Scientific, 2009, 1171–1184 | DOI | Zbl