Generalized potentials of double layer in plane theory of elasticity
Eurasian mathematical journal, Tome 5 (2014) no. 2, pp. 78-125

Voir la notice de l'article provenant de la source Math-Net.Ru

Connected with the function-theoretic approach, generalized potentials of double layer are introduced for the Lamé system of plane anisotropic elasticity theory. These potentials are constructed for the displacement vector – a solution of the Lamé system, and as well for the conjugate vector–functions describing the stress tensor. There are obtained integral representations of these solutions via potentials mentioned above. As a corollary the first and the second boundary-value problems in different classes (Hölder, Hardy, the class of functions continuous in a closed domain) are reduced to equivalent systems of the boundary Fredholm equations in corresponding spaces.
@article{EMJ_2014_5_2_a4,
     author = {A. P. Soldatov},
     title = {Generalized potentials of double layer in plane theory of elasticity},
     journal = {Eurasian mathematical journal},
     pages = {78--125},
     publisher = {mathdoc},
     volume = {5},
     number = {2},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2014_5_2_a4/}
}
TY  - JOUR
AU  - A. P. Soldatov
TI  - Generalized potentials of double layer in plane theory of elasticity
JO  - Eurasian mathematical journal
PY  - 2014
SP  - 78
EP  - 125
VL  - 5
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2014_5_2_a4/
LA  - en
ID  - EMJ_2014_5_2_a4
ER  - 
%0 Journal Article
%A A. P. Soldatov
%T Generalized potentials of double layer in plane theory of elasticity
%J Eurasian mathematical journal
%D 2014
%P 78-125
%V 5
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2014_5_2_a4/
%G en
%F EMJ_2014_5_2_a4
A. P. Soldatov. Generalized potentials of double layer in plane theory of elasticity. Eurasian mathematical journal, Tome 5 (2014) no. 2, pp. 78-125. http://geodesic.mathdoc.fr/item/EMJ_2014_5_2_a4/