Infiniteness of the number of eigenvalues embedded in the essential spectrum of a~$2\times2$ operator matrix
Eurasian mathematical journal, Tome 5 (2014) no. 2, pp. 60-77

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper a $2\times2$ block operator matrix $\mathbf H$ is considered as a bounded self-adjoint operator in the direct sum of two Hilbert spaces. The structure of the essential spectrum of $\mathbf H$ is studied. Under some natural conditions the infiniteness of the number of eigenvalues is proved, located inside, in the gap or below the bottom of the essential spectrum of $\mathbf H$.
@article{EMJ_2014_5_2_a3,
     author = {M. I. Muminov and T. H. Rasulov},
     title = {Infiniteness of the number of eigenvalues embedded in the essential spectrum of a~$2\times2$ operator matrix},
     journal = {Eurasian mathematical journal},
     pages = {60--77},
     publisher = {mathdoc},
     volume = {5},
     number = {2},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2014_5_2_a3/}
}
TY  - JOUR
AU  - M. I. Muminov
AU  - T. H. Rasulov
TI  - Infiniteness of the number of eigenvalues embedded in the essential spectrum of a~$2\times2$ operator matrix
JO  - Eurasian mathematical journal
PY  - 2014
SP  - 60
EP  - 77
VL  - 5
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2014_5_2_a3/
LA  - en
ID  - EMJ_2014_5_2_a3
ER  - 
%0 Journal Article
%A M. I. Muminov
%A T. H. Rasulov
%T Infiniteness of the number of eigenvalues embedded in the essential spectrum of a~$2\times2$ operator matrix
%J Eurasian mathematical journal
%D 2014
%P 60-77
%V 5
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2014_5_2_a3/
%G en
%F EMJ_2014_5_2_a3
M. I. Muminov; T. H. Rasulov. Infiniteness of the number of eigenvalues embedded in the essential spectrum of a~$2\times2$ operator matrix. Eurasian mathematical journal, Tome 5 (2014) no. 2, pp. 60-77. http://geodesic.mathdoc.fr/item/EMJ_2014_5_2_a3/