Infiniteness of the number of eigenvalues embedded in the essential spectrum of a~$2\times2$ operator matrix
Eurasian mathematical journal, Tome 5 (2014) no. 2, pp. 60-77
Voir la notice de l'article provenant de la source Math-Net.Ru
In the present paper a $2\times2$ block operator matrix $\mathbf H$ is considered as a bounded self-adjoint operator in the direct sum of two Hilbert spaces. The structure of the essential spectrum of $\mathbf H$ is studied. Under some natural conditions the infiniteness of the number of eigenvalues is proved, located inside, in the gap or below the bottom of the essential spectrum of $\mathbf H$.
@article{EMJ_2014_5_2_a3,
author = {M. I. Muminov and T. H. Rasulov},
title = {Infiniteness of the number of eigenvalues embedded in the essential spectrum of a~$2\times2$ operator matrix},
journal = {Eurasian mathematical journal},
pages = {60--77},
publisher = {mathdoc},
volume = {5},
number = {2},
year = {2014},
language = {en},
url = {http://geodesic.mathdoc.fr/item/EMJ_2014_5_2_a3/}
}
TY - JOUR AU - M. I. Muminov AU - T. H. Rasulov TI - Infiniteness of the number of eigenvalues embedded in the essential spectrum of a~$2\times2$ operator matrix JO - Eurasian mathematical journal PY - 2014 SP - 60 EP - 77 VL - 5 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/EMJ_2014_5_2_a3/ LA - en ID - EMJ_2014_5_2_a3 ER -
%0 Journal Article %A M. I. Muminov %A T. H. Rasulov %T Infiniteness of the number of eigenvalues embedded in the essential spectrum of a~$2\times2$ operator matrix %J Eurasian mathematical journal %D 2014 %P 60-77 %V 5 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/EMJ_2014_5_2_a3/ %G en %F EMJ_2014_5_2_a3
M. I. Muminov; T. H. Rasulov. Infiniteness of the number of eigenvalues embedded in the essential spectrum of a~$2\times2$ operator matrix. Eurasian mathematical journal, Tome 5 (2014) no. 2, pp. 60-77. http://geodesic.mathdoc.fr/item/EMJ_2014_5_2_a3/