Infiniteness of the number of eigenvalues embedded in the essential spectrum of a~$2\times2$ operator matrix
Eurasian mathematical journal, Tome 5 (2014) no. 2, pp. 60-77.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper a $2\times2$ block operator matrix $\mathbf H$ is considered as a bounded self-adjoint operator in the direct sum of two Hilbert spaces. The structure of the essential spectrum of $\mathbf H$ is studied. Under some natural conditions the infiniteness of the number of eigenvalues is proved, located inside, in the gap or below the bottom of the essential spectrum of $\mathbf H$.
@article{EMJ_2014_5_2_a3,
     author = {M. I. Muminov and T. H. Rasulov},
     title = {Infiniteness of the number of eigenvalues embedded in the essential spectrum of a~$2\times2$ operator matrix},
     journal = {Eurasian mathematical journal},
     pages = {60--77},
     publisher = {mathdoc},
     volume = {5},
     number = {2},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2014_5_2_a3/}
}
TY  - JOUR
AU  - M. I. Muminov
AU  - T. H. Rasulov
TI  - Infiniteness of the number of eigenvalues embedded in the essential spectrum of a~$2\times2$ operator matrix
JO  - Eurasian mathematical journal
PY  - 2014
SP  - 60
EP  - 77
VL  - 5
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2014_5_2_a3/
LA  - en
ID  - EMJ_2014_5_2_a3
ER  - 
%0 Journal Article
%A M. I. Muminov
%A T. H. Rasulov
%T Infiniteness of the number of eigenvalues embedded in the essential spectrum of a~$2\times2$ operator matrix
%J Eurasian mathematical journal
%D 2014
%P 60-77
%V 5
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2014_5_2_a3/
%G en
%F EMJ_2014_5_2_a3
M. I. Muminov; T. H. Rasulov. Infiniteness of the number of eigenvalues embedded in the essential spectrum of a~$2\times2$ operator matrix. Eurasian mathematical journal, Tome 5 (2014) no. 2, pp. 60-77. http://geodesic.mathdoc.fr/item/EMJ_2014_5_2_a3/

[1] Zh. I. Abdullaev, I. A. Ikromov, S. N. Lakaev, “Embedded eigenvalues and resonances of a generalized Friedrichs model”, Theor. Math. Phys., 103:1 (1995), 390–398 | DOI | MR | Zbl

[2] S. Albeverio, “On bound states in the continuum of $N$-body systems and the Virial theorem”, Ann. Phys., 71 (1972), 167–176 | DOI | MR

[3] S. Albeverio, S. N. Lakaev, Z. I. Muminov, “Schrödinger operators on lattices. The Efimov effect and discrete spectrum asymptotics”, Ann. Henri Poincaré, 5 (2004), 743–772 | MR | Zbl

[4] S. Albeverio, S. N. Lakaev, Z. I. Muminov, “The threshold effects for a family of Friedrichs models under rank one perturbations”, J. Math. Anal. Appl., 330:2 (2007), 1152–1168 | DOI | MR | Zbl

[5] F. A. Berezin, M. A. Shubin, The Schrödinger equation, Kluwer Academic Publishers, Dordrecht–Boston–London, 1991 | MR | Zbl

[6] P. R. Halmos, A Hilbert space problem book, second edition, Springer-Verlag New York Inc., 1982 | MR | Zbl

[7] R. A. Minlos, H. Spohn, “The three-body problem in radioactive decay: the case of one atom and at most two photons”, Topics in Statistical and Theoretical Physics, Amer. Math. Soc. Transl. Ser. 2, 177, 1996, 159–193 | MR | Zbl

[8] M. É. Muminov, “The infiniteness of the number of eigenvalues in the gap in the essential spectrum for the three-particle Schrödinger operator on a lattice”, Theor. Math. Phys., 159:2 (2009), 299–317 | DOI | MR | Zbl

[9] M. É. Muminov, “Formula for the number of eigenvalues of a three-particle Schrödinger operator on a lattice”, Theor. Math. Phys., 164:1 (2010), 46–61 | DOI

[10] M. É. Muminov, N. M. Aliev, “Spectrum of the three-particle Schrödinger operator on a onedimensional lattice”, Theor. Math. Phys., 171:3 (2012), 754–768 | DOI | MR | Zbl

[11] M. I. Muminov, T. H. Rasulov, “The Faddeev equation and essential spectrum of a Hamiltonian in Fock Space”, Methods Funct. Anal. Topology, 17:1 (2011), 47–57 | MR | Zbl

[12] S. N. Nabako, S. I. Yakovlev, “The discrete Schrödinger operators. A point spectrum lying in the continuous spectrum”, St. Petersburg Mathematical Journal, 4:3 (1993), 559–568 | MR | Zbl

[13] T. Kh. Rasulov, “The Faddeev equation and the location of the essential spectrum of a model multi-particle operator”, Russian Math. (Iz. VUZ), 52:12 (2008), 50–59 | DOI | MR | Zbl

[14] T. Kh. Rasulov, “Study of the essential spectrum of a matrix operator”, Theor. Math. Phys., 164:1 (2010), 883–895 | DOI | Zbl

[15] T. Kh. Rasulov, “On the number of eigenvalues of a matrix operator”, Siberian Math. J., 52:2 (2011), 316–328 | DOI | MR | Zbl

[16] T. Kh. Rasulov, “Asymptotics of the discrete spectrum of a model operator associated with the system of three particles on a lattice”, Theor. Math. Phys., 163:1 (2010), 429–437 | DOI | Zbl

[17] M. Reed, B. Simon, Methods of modern mathematical physics, v. IV, Analysis of operators, Academic Press, New York, 1979 | MR | Zbl

[18] M. M. Skriganov, “On eigenvalues of the Schrödinger's operator, belonging to the continuous spectrum, Part 7”, Zap. Nauchn. Sem. LOMI, 38, 1973, 149–152 | MR | Zbl

[19] A. V. Sobolev, “The Efimov effect. Discrete spectrum asymptotics”, Commun. Math. Phys., 156:1 (1993), 101–126 | DOI | MR | Zbl

[20] G. R. Yodgorov, M. É. Muminov, “Spectrum of a model operator in the perturbation theory of the essential spectrum”, Theor. Math. Phys., 144:3 (2005), 1344–1352 | DOI | MR | Zbl

[21] Yu. Zhukov, R. Minlos, “Spectrum and scattering in a “spin-boson” model with not more than three photons”, Theor. Math. Phys., 103:1 (1995), 398–411 | DOI | MR | Zbl