H\"older analysis and geometry on Banach spaces: homogeneous homeomorphisms and commutative group structures, approximation and Tzar'kov's phenomenon. Part~II
Eurasian mathematical journal, Tome 5 (2014) no. 2, pp. 7-51.

Voir la notice de l'article provenant de la source Math-Net.Ru

In an explicit quantitative and often precise manner, we construct the homogeneous Hölder homeomorphisms and study the approximation of uniformly continuous mappings by the Hölder–Lipschitz ones between the pairs of abstract and concrete metric and (quasi) Banach spaces including, in particular, Banach lattices, general noncommutative $L_p$-spaces, the classes $IG$ and $IG_+$ of independently generated spaces (for example, non-commutative-valued Bochner–Lebesgue spaces) and anisotropic Sobolev, Nikol'skii–Besov and Lizorkin–Triebel spaces of functions on an open subset or a class of domains of an Euclidean space defined with underlying mixed $L_p$-norms in terms of differences, local approximations by polynomials, wavelet decompositions and systems of closed operators, such as holomorphic functional calculus and Fourier multipliers of smooth Littlewood–Paley decompositions. Our approach also allows to treat both the finite (as in the initial and/or boundary value problems in PDE) and infinite $l_p$-sums of these spaces, their duals and “Bochnerizations”. Many results are automatically extended to the setting of the function spaces with variable smoothness, including the weighted ones. The sharpness of the approximation results, shown for the majority of the pairs under some mild conditions and underpinning the corresponding sharpness of the Hölder continuity exponents of the homogeneous homeomorphisms, indicates that the range of the exponents is often a proper subset of $(0,1]$, that is the presence of Tsar'kov's phenomenon. We also consider the approximation by the mappings taking the values in the convex envelope of the range of the original approximated mapping. Negative results on the absence of uniform embeddings of the balls of some function spaces, particularly including BMO, VMO, Nikol'skii–Besov and Lizorkin–Triebel spaces with $q=\infty$ and their VMO-like separable subspaces, into any Hilbert space are established. Relying on the solution to the problem of global Hölder continuity of metric projections and the existence of Hölder continuous homogeneous right inverses of closed surjective operators and retractions onto closed convex subsets, as well as our results on the bounded extendability of Hölder–Lipschitz mappings and rehomogenisation technique, we develop and employ our key explicit quantitative tools, such as the global (on arbitrary bounded subsets) Hölder continuity of duality mappings and the Lozanovskii factorisation, the answer to the three-space problem for the Hölder classification of infinite-dimensional spheres, the Hölder continuous counterpart of the Kalton–Pełczyńki decomposition method, the Hölder continuity of the homogeneous homeomorphism induced by the complex interpolation method and such counterparts of the classical Mazur mappings as the abstract and simple Mazur ascent and complex Mazur descent. Important role is also played by the study of the local unconditional structure and other complementability results, as well as the existence of equivalent geometrically friendly norms.
@article{EMJ_2014_5_2_a1,
     author = {S. S. Ajiev},
     title = {H\"older analysis and geometry on {Banach} spaces: homogeneous homeomorphisms and commutative group structures, approximation and {Tzar'kov's} phenomenon. {Part~II}},
     journal = {Eurasian mathematical journal},
     pages = {7--51},
     publisher = {mathdoc},
     volume = {5},
     number = {2},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2014_5_2_a1/}
}
TY  - JOUR
AU  - S. S. Ajiev
TI  - H\"older analysis and geometry on Banach spaces: homogeneous homeomorphisms and commutative group structures, approximation and Tzar'kov's phenomenon. Part~II
JO  - Eurasian mathematical journal
PY  - 2014
SP  - 7
EP  - 51
VL  - 5
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2014_5_2_a1/
LA  - en
ID  - EMJ_2014_5_2_a1
ER  - 
%0 Journal Article
%A S. S. Ajiev
%T H\"older analysis and geometry on Banach spaces: homogeneous homeomorphisms and commutative group structures, approximation and Tzar'kov's phenomenon. Part~II
%J Eurasian mathematical journal
%D 2014
%P 7-51
%V 5
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2014_5_2_a1/
%G en
%F EMJ_2014_5_2_a1
S. S. Ajiev. H\"older analysis and geometry on Banach spaces: homogeneous homeomorphisms and commutative group structures, approximation and Tzar'kov's phenomenon. Part~II. Eurasian mathematical journal, Tome 5 (2014) no. 2, pp. 7-51. http://geodesic.mathdoc.fr/item/EMJ_2014_5_2_a1/

[1] S. S. Ajiev, “Hölder analysis and geometry on Banach spaces: homogeneous homeomorphisms and commutative group structures, approximation and Tzar'kov's phenomenon. Part I”, Eurasian Math. J., 5:1 (2014), 7–60

[2] S. S. Ajiev, “Characterization of the function spaces $B^s_{p,q}(G)$, $L^s_{p,q}(G)$ and $W^s_p(G)$, and embeddings into $\mathrm{BMO}(G)$”, Proc. Steklov Inst. Math., 214, no. 3, 1996, 1–18 | MR | Zbl

[3] S. S. Ajiev, “Characterizations of $B^s_{p,q}(G)$, $L^s_{p,q}(G)$, $W^s_p(G)$ and other function spaces. Applications”, Proc. Steklov Math. Inst., 227, no. 4, 1999, 1–36 | MR | Zbl

[4] S. S. Ajiev, On noncomplementable subspaces and noncompact embeddings of certain function spaces, No 1600-BOO, VINITI, Moscow, 2000, 36 pp.

[5] S. S. Ajiev, “Phillips-type theorems for Nikol'skii and certain other spaces”, Proc. Steklov Math. Inst., 232, no. 1, 2001, 27–38 | MR | Zbl

[6] S. S. Ajiev, “On the boundedness of singular integral operators from certain classes. II”, Analysis Mathematica, 32:2 (2006), 81–112 | DOI | MR | Zbl

[7] S. S. Ajiev, “On Chebyshev centres, retractions, metric projections and homogeneous inverses for Besov, Lizorkin–Triebel, Sobolev and other Banach spaces”, East J. Approx., 15:3 (2009), 375–428 | MR

[8] S. S. Ajiev, “On concentration, deviation and Dvoretzky's theorem for Besov, Lizorkin–Triebel and other spaces”, Compl. Var. Ellipt. Eq., 55:8–10, Special issue dedicated to Gérard Bourdaud (2010), 693–726 | DOI | MR | Zbl

[9] S. S. Ajiev, “Quantitative Hahn–Banach theorems and isometric extensions for wavelet and other Banach spaces”, Axioms, 2 (2013), 224–270 | DOI | Zbl

[10] S. S. Ajiev, “Asymmetric convexity and smoothness: quantitative Lyapunov theorem and Lozanovskii factorisation”, Markov chains and Walsh chaos, 64 pp., (submitted)

[11] S. S. Ajiev, Interpolation and bounded extension of Hölder–Lipschitz mappings between function, non-commutative and other Banach spaces, 35 pp., (submitted)

[12] S. S. Ajiev, Copies of sequence spaces and basic properties of function spaces, 47 pp., (submitted)

[13] S. S. Ajiev, Elements of quantitative functional analysis for function and other Banach spaces, 222 pp., (submitted book manuscript)

[14] Ya. I. Alber, “A bound for the modulus of continuity for metric projections in a uniformly convex and uniformly smooth Banach spaces”, J. Approx. Th., 85 (1996), 237–249 | DOI | MR | Zbl

[15] K. M. Ball, “Markov chains, Riesz transforms and Lipschitz maps”, Geom. Funct. Anal., 92:2 (1992), 137–172 | DOI | MR

[16] M. S. Baouendi, G. Goulaouic, “Commutation de l'intersection et des founcteurs d'interpolation”, Compt. Rend. Acad. Sci. Paris, 265 (1967), 313–315 | MR | Zbl

[17] Y. Benyamini, J. Lindenstrauss, Geometric nonlinear functional analysis, v. 1, Colloquium Publications, 48, American Mathematical Society, Providence, Rhode Island, 2000, 489 pp. | MR | Zbl

[18] V. I. Berdyshev, “Spaces with a uniformly continuous metric projection”, Mat. Zametki, 17:1 (1975), 3–12 | MR | Zbl

[19] J. Bergh, J. Löfström, Interpolation spaces. An introduction, Die Grundlehren der mathematischen Wissenschaften, 223, Springer-Verlag, Berlin–Heidelberg–New York–Tokyo, 1976 | DOI | MR | Zbl

[20] O. V. Besov, “Interpolation of the spaces of differentiable functions on a domain”, Trudy Matem. Inst. Steklov, 214, 1997, 59–82 | MR | Zbl

[21] C. Björnestål, “Local Lipshitz continuity of the metric projection operator”, Approximation theory, Banach Centre Publ., 4, ed. Z. Ciesielski, Warsaw, 1975, 43–53 | MR

[22] J. Bourgain, “Extension of a result of Benedek, Calderón and Panzone”, Ark. Mat., 22 (1984), 91–95 | DOI | MR | Zbl

[23] A. L. Brown, “A rotund reflexive space having a subspace of codimension two with a discontinuous metric projection”, Michigan Math. J., 21 (1974), 145–151 | DOI | MR | Zbl

[24] M. Daher, “Homéomorphismes uniformes entre les sphères unité des espaces d'interpolation”, C. R. Acad. Sci Paris Ser. I, 316 (1993), 1051–1054 | MR | Zbl

[25] J. Diestel, H. Jarchow, A. Tonge, Absolutely summing operators, Cambridge University Press, Cambridge, 1995, 474 pp. | MR | Zbl

[26] P. Enflo, “On a problem of Smirnov”, Ark. Math., 8 (1969), 107–109 | DOI | MR

[27] G. M. Fichtenholtz, L. V. Kantorovich, “Sur les opérations linéaires dans l'espace des fonctions bornées”, Stud. Math., 5 (1934), 69–98

[28] F. Grünbaum, E. H. Zarantonello, “On the extension of uniformly continuous mappings”, Michigan Math. J., 15 (1968), 65–74 | DOI | MR | Zbl

[29] M. D. Kirszbraun, “Über die zusammenziehenden und Lipschitzchen transformationen”, Fund. Math., 22 (1934), 77–108 | Zbl

[30] S. V. Konyagin, I. G. Tsar'kov, “On smoothing of maps in normed spaces”, Russian Math. Surveys, 43:4(262) (1988), 205–206 | DOI | MR | Zbl

[31] J. Lindenstrauss, L. Tzafriri, Classical Banach spaces, Ergebnisse, 97, Springer Verlag, Berlin–Heidelberg–New York, 1979, 243 pp. | MR | Zbl

[32] S. Mazur, “Une remarque sur l'homéomorphie des champs fonctionnels”, Studia Math., 1 (1929), 83–85 | Zbl

[33] A. Naor, “A phase transition phenomenon between the isometric and isomorphic extension problems for Hölder functions between $L_p$ spaces”, Mathematika, 48:1–2 (2001), 253–271 | DOI | MR | Zbl

[34] A. Naor, Y. Peres, O. Schramm, S. Sheffield, “Markov chains in smooth Banach spaces and Gromov-hyperbolic metric spaces”, Duke Math. J., 134 (2006), 165–197 | DOI | MR | Zbl

[35] Springer Verlag, Berlin–Heidelberg–New York, 1975 | MR | Zbl

[36] E. Odell, Th. Schlumprecht, “The distortion problem”, Acta Math., 173 (1994), 259–281 | DOI | MR | Zbl

[37] R. R. Phelps, “Convex sets and nearest points”, Proc. Amer. Math. Soc., 8:4 (1957), 790–797 | DOI | MR | Zbl

[38] G. Pisier, “Probabilistic Methods in the Geometry of Banach Spaces”, Probability and Analysis (Varenna, 1985), Lect. Notes Math., 1206, 1986, 167–241 | DOI | MR | Zbl

[39] G. Pisier, Factorization of linear operators and geometry of Banach spaces, CBMS Regional Conference series, 60, American Mathematical Society, Providence, Rhode Island, 1986, 154 pp. | MR

[40] G. Pisier, Q. Xu, “Non-Commutative $L_p$-Spaces”, Handbook of the geometry of Banach spaces, v. II, Elsevier, Amsterdam–Tokyo, 2001, 1459–1517 | MR

[41] H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North-Holland Publishing Company, Amsterdam–Oxford, 1995, 528 pp. | MR

[42] I. G. Tsar'kov, “Theorems on global existence of an implicit function, and their applications”, Russian Acad. Sci. Dokl. Math., 45 (1992), 638–640 | MR | Zbl

[43] Russian Acad. Sci. Sbornik Math., 79:2 (1994), 287–313 | DOI | MR | Zbl

[44] Math. Notes, 54:3 (1993), 957–967 | DOI | MR | Zbl

[45] I. G. Tsar'kov, “Smoothing of abstract functions”, Russian Acad. Sci. Sb. Math., 83:2 (1995), 405–430 | DOI | MR | Zbl

[46] L. Veselý, “Metric projections after renorming”, J. Approx. Th., 66 (1991), 72–82 | DOI | MR

[47] L. P. Vlasov, “On the continuity of the metric projection”, Matem. Zametki, 30:6 (1981), 813–818 | MR | Zbl

[48] J. H. Wells, L. R. Williams, Embeddings and Extensions in Analysis, Ergebnisse der Mathematik und ihrer Grenzgebiete, 84, Springer-Verlag, Berlin–Heidelberg–New York, 1975, 108 pp. | MR | Zbl