Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2014_5_2_a1, author = {S. S. Ajiev}, title = {H\"older analysis and geometry on {Banach} spaces: homogeneous homeomorphisms and commutative group structures, approximation and {Tzar'kov's} phenomenon. {Part~II}}, journal = {Eurasian mathematical journal}, pages = {7--51}, publisher = {mathdoc}, volume = {5}, number = {2}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2014_5_2_a1/} }
TY - JOUR AU - S. S. Ajiev TI - H\"older analysis and geometry on Banach spaces: homogeneous homeomorphisms and commutative group structures, approximation and Tzar'kov's phenomenon. Part~II JO - Eurasian mathematical journal PY - 2014 SP - 7 EP - 51 VL - 5 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/EMJ_2014_5_2_a1/ LA - en ID - EMJ_2014_5_2_a1 ER -
%0 Journal Article %A S. S. Ajiev %T H\"older analysis and geometry on Banach spaces: homogeneous homeomorphisms and commutative group structures, approximation and Tzar'kov's phenomenon. Part~II %J Eurasian mathematical journal %D 2014 %P 7-51 %V 5 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/EMJ_2014_5_2_a1/ %G en %F EMJ_2014_5_2_a1
S. S. Ajiev. H\"older analysis and geometry on Banach spaces: homogeneous homeomorphisms and commutative group structures, approximation and Tzar'kov's phenomenon. Part~II. Eurasian mathematical journal, Tome 5 (2014) no. 2, pp. 7-51. http://geodesic.mathdoc.fr/item/EMJ_2014_5_2_a1/
[1] S. S. Ajiev, “Hölder analysis and geometry on Banach spaces: homogeneous homeomorphisms and commutative group structures, approximation and Tzar'kov's phenomenon. Part I”, Eurasian Math. J., 5:1 (2014), 7–60
[2] S. S. Ajiev, “Characterization of the function spaces $B^s_{p,q}(G)$, $L^s_{p,q}(G)$ and $W^s_p(G)$, and embeddings into $\mathrm{BMO}(G)$”, Proc. Steklov Inst. Math., 214, no. 3, 1996, 1–18 | MR | Zbl
[3] S. S. Ajiev, “Characterizations of $B^s_{p,q}(G)$, $L^s_{p,q}(G)$, $W^s_p(G)$ and other function spaces. Applications”, Proc. Steklov Math. Inst., 227, no. 4, 1999, 1–36 | MR | Zbl
[4] S. S. Ajiev, On noncomplementable subspaces and noncompact embeddings of certain function spaces, No 1600-BOO, VINITI, Moscow, 2000, 36 pp.
[5] S. S. Ajiev, “Phillips-type theorems for Nikol'skii and certain other spaces”, Proc. Steklov Math. Inst., 232, no. 1, 2001, 27–38 | MR | Zbl
[6] S. S. Ajiev, “On the boundedness of singular integral operators from certain classes. II”, Analysis Mathematica, 32:2 (2006), 81–112 | DOI | MR | Zbl
[7] S. S. Ajiev, “On Chebyshev centres, retractions, metric projections and homogeneous inverses for Besov, Lizorkin–Triebel, Sobolev and other Banach spaces”, East J. Approx., 15:3 (2009), 375–428 | MR
[8] S. S. Ajiev, “On concentration, deviation and Dvoretzky's theorem for Besov, Lizorkin–Triebel and other spaces”, Compl. Var. Ellipt. Eq., 55:8–10, Special issue dedicated to Gérard Bourdaud (2010), 693–726 | DOI | MR | Zbl
[9] S. S. Ajiev, “Quantitative Hahn–Banach theorems and isometric extensions for wavelet and other Banach spaces”, Axioms, 2 (2013), 224–270 | DOI | Zbl
[10] S. S. Ajiev, “Asymmetric convexity and smoothness: quantitative Lyapunov theorem and Lozanovskii factorisation”, Markov chains and Walsh chaos, 64 pp., (submitted)
[11] S. S. Ajiev, Interpolation and bounded extension of Hölder–Lipschitz mappings between function, non-commutative and other Banach spaces, 35 pp., (submitted)
[12] S. S. Ajiev, Copies of sequence spaces and basic properties of function spaces, 47 pp., (submitted)
[13] S. S. Ajiev, Elements of quantitative functional analysis for function and other Banach spaces, 222 pp., (submitted book manuscript)
[14] Ya. I. Alber, “A bound for the modulus of continuity for metric projections in a uniformly convex and uniformly smooth Banach spaces”, J. Approx. Th., 85 (1996), 237–249 | DOI | MR | Zbl
[15] K. M. Ball, “Markov chains, Riesz transforms and Lipschitz maps”, Geom. Funct. Anal., 92:2 (1992), 137–172 | DOI | MR
[16] M. S. Baouendi, G. Goulaouic, “Commutation de l'intersection et des founcteurs d'interpolation”, Compt. Rend. Acad. Sci. Paris, 265 (1967), 313–315 | MR | Zbl
[17] Y. Benyamini, J. Lindenstrauss, Geometric nonlinear functional analysis, v. 1, Colloquium Publications, 48, American Mathematical Society, Providence, Rhode Island, 2000, 489 pp. | MR | Zbl
[18] V. I. Berdyshev, “Spaces with a uniformly continuous metric projection”, Mat. Zametki, 17:1 (1975), 3–12 | MR | Zbl
[19] J. Bergh, J. Löfström, Interpolation spaces. An introduction, Die Grundlehren der mathematischen Wissenschaften, 223, Springer-Verlag, Berlin–Heidelberg–New York–Tokyo, 1976 | DOI | MR | Zbl
[20] O. V. Besov, “Interpolation of the spaces of differentiable functions on a domain”, Trudy Matem. Inst. Steklov, 214, 1997, 59–82 | MR | Zbl
[21] C. Björnestål, “Local Lipshitz continuity of the metric projection operator”, Approximation theory, Banach Centre Publ., 4, ed. Z. Ciesielski, Warsaw, 1975, 43–53 | MR
[22] J. Bourgain, “Extension of a result of Benedek, Calderón and Panzone”, Ark. Mat., 22 (1984), 91–95 | DOI | MR | Zbl
[23] A. L. Brown, “A rotund reflexive space having a subspace of codimension two with a discontinuous metric projection”, Michigan Math. J., 21 (1974), 145–151 | DOI | MR | Zbl
[24] M. Daher, “Homéomorphismes uniformes entre les sphères unité des espaces d'interpolation”, C. R. Acad. Sci Paris Ser. I, 316 (1993), 1051–1054 | MR | Zbl
[25] J. Diestel, H. Jarchow, A. Tonge, Absolutely summing operators, Cambridge University Press, Cambridge, 1995, 474 pp. | MR | Zbl
[26] P. Enflo, “On a problem of Smirnov”, Ark. Math., 8 (1969), 107–109 | DOI | MR
[27] G. M. Fichtenholtz, L. V. Kantorovich, “Sur les opérations linéaires dans l'espace des fonctions bornées”, Stud. Math., 5 (1934), 69–98
[28] F. Grünbaum, E. H. Zarantonello, “On the extension of uniformly continuous mappings”, Michigan Math. J., 15 (1968), 65–74 | DOI | MR | Zbl
[29] M. D. Kirszbraun, “Über die zusammenziehenden und Lipschitzchen transformationen”, Fund. Math., 22 (1934), 77–108 | Zbl
[30] S. V. Konyagin, I. G. Tsar'kov, “On smoothing of maps in normed spaces”, Russian Math. Surveys, 43:4(262) (1988), 205–206 | DOI | MR | Zbl
[31] J. Lindenstrauss, L. Tzafriri, Classical Banach spaces, Ergebnisse, 97, Springer Verlag, Berlin–Heidelberg–New York, 1979, 243 pp. | MR | Zbl
[32] S. Mazur, “Une remarque sur l'homéomorphie des champs fonctionnels”, Studia Math., 1 (1929), 83–85 | Zbl
[33] A. Naor, “A phase transition phenomenon between the isometric and isomorphic extension problems for Hölder functions between $L_p$ spaces”, Mathematika, 48:1–2 (2001), 253–271 | DOI | MR | Zbl
[34] A. Naor, Y. Peres, O. Schramm, S. Sheffield, “Markov chains in smooth Banach spaces and Gromov-hyperbolic metric spaces”, Duke Math. J., 134 (2006), 165–197 | DOI | MR | Zbl
[35] Springer Verlag, Berlin–Heidelberg–New York, 1975 | MR | Zbl
[36] E. Odell, Th. Schlumprecht, “The distortion problem”, Acta Math., 173 (1994), 259–281 | DOI | MR | Zbl
[37] R. R. Phelps, “Convex sets and nearest points”, Proc. Amer. Math. Soc., 8:4 (1957), 790–797 | DOI | MR | Zbl
[38] G. Pisier, “Probabilistic Methods in the Geometry of Banach Spaces”, Probability and Analysis (Varenna, 1985), Lect. Notes Math., 1206, 1986, 167–241 | DOI | MR | Zbl
[39] G. Pisier, Factorization of linear operators and geometry of Banach spaces, CBMS Regional Conference series, 60, American Mathematical Society, Providence, Rhode Island, 1986, 154 pp. | MR
[40] G. Pisier, Q. Xu, “Non-Commutative $L_p$-Spaces”, Handbook of the geometry of Banach spaces, v. II, Elsevier, Amsterdam–Tokyo, 2001, 1459–1517 | MR
[41] H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North-Holland Publishing Company, Amsterdam–Oxford, 1995, 528 pp. | MR
[42] I. G. Tsar'kov, “Theorems on global existence of an implicit function, and their applications”, Russian Acad. Sci. Dokl. Math., 45 (1992), 638–640 | MR | Zbl
[43] Russian Acad. Sci. Sbornik Math., 79:2 (1994), 287–313 | DOI | MR | Zbl
[44] Math. Notes, 54:3 (1993), 957–967 | DOI | MR | Zbl
[45] I. G. Tsar'kov, “Smoothing of abstract functions”, Russian Acad. Sci. Sb. Math., 83:2 (1995), 405–430 | DOI | MR | Zbl
[46] L. Veselý, “Metric projections after renorming”, J. Approx. Th., 66 (1991), 72–82 | DOI | MR
[47] L. P. Vlasov, “On the continuity of the metric projection”, Matem. Zametki, 30:6 (1981), 813–818 | MR | Zbl
[48] J. H. Wells, L. R. Williams, Embeddings and Extensions in Analysis, Ergebnisse der Mathematik und ihrer Grenzgebiete, 84, Springer-Verlag, Berlin–Heidelberg–New York, 1975, 108 pp. | MR | Zbl