Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2014_5_1_a5, author = {B. N. Biyarov}, title = {On {Volterra} relatively compact perturbations of the {Laplace} operator}, journal = {Eurasian mathematical journal}, pages = {135--140}, publisher = {mathdoc}, volume = {5}, number = {1}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2014_5_1_a5/} }
B. N. Biyarov. On Volterra relatively compact perturbations of the Laplace operator. Eurasian mathematical journal, Tome 5 (2014) no. 1, pp. 135-140. http://geodesic.mathdoc.fr/item/EMJ_2014_5_1_a5/
[1] N. H. Bingham, C. M. Goldie, J. L. Teugels, Regular variation, Encyclopaedia of mathematics and its applications, Cambridge University Press, 1987 | MR | Zbl
[2] Math. Notes, 95:4 (2014), 23–30 | DOI
[3] B. N. Biyarov, Spectral properties of correct restrictions and extensions, LAMBERT Acad. Publ., Saarbrucken, 2012 (in Russian)
[4] Math. Notes, 56:1 (1994), 751–753 | DOI | MR | Zbl
[5] I. C. Gohberg, M. G. Krein, Introduction to the theory of linear nonselfadjoint operators in Hilbert Space, Nauka, M., 1965 (in Russian) | MR | Zbl
[6] L. Hörmander, On the theory of general partial differential operators, IL, M., 1959 (in Russian) | Zbl
[7] B. K. Kokebaev, M. Otelbaev, A. N. Shynybekov, “On problems of extension and restriction of operators”, Dokl. Akad. Nauk SSSR, 271:6 (1983), 1307–1310 (in Russian) | MR | Zbl
[8] Soviet Math. Dokl., 13 (1972), 1565–1568 | MR
[9] M. Otelbaev, A. N. Shynybekov, “On well posed problems of Bitsadze–Samarskii type”, Dokl. Akad. Nauk SSSR, 265:4 (1982), 815–819 (in Russian) | MR | Zbl
[10] R. Schatten, Norm ideals of completely continuous operators, Springer-Verlag, Berlin, 1960 | MR | Zbl
[11] E. Seneta, Regularly varying functions, Springer-Verlag, Berlin–Heidelberg–New-York, 1976 | MR | Zbl
[12] M. I. Vishik, “On general boundary problems for elliptic differential equations”, Trudy Moscow. Mat. Obshch., 1, 1952, 187–246 (in Russian) ; Am. Math. Soc. Transl., Ser. II, 24 (1963), 107–172 | MR | Zbl | Zbl