The real and complex techniques in harmonic analysis from the point of view of covariant transform
Eurasian mathematical journal, Tome 5 (2014) no. 1, pp. 95-121.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper reviews complex and real techniques in harmonic analysis. We describe the common source of both approaches rooted in the covariant transform generated by the affine group.
@article{EMJ_2014_5_1_a3,
     author = {V. V. Kisil},
     title = {The real and complex techniques in harmonic analysis from the point of view of covariant transform},
     journal = {Eurasian mathematical journal},
     pages = {95--121},
     publisher = {mathdoc},
     volume = {5},
     number = {1},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2014_5_1_a3/}
}
TY  - JOUR
AU  - V. V. Kisil
TI  - The real and complex techniques in harmonic analysis from the point of view of covariant transform
JO  - Eurasian mathematical journal
PY  - 2014
SP  - 95
EP  - 121
VL  - 5
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2014_5_1_a3/
LA  - en
ID  - EMJ_2014_5_1_a3
ER  - 
%0 Journal Article
%A V. V. Kisil
%T The real and complex techniques in harmonic analysis from the point of view of covariant transform
%J Eurasian mathematical journal
%D 2014
%P 95-121
%V 5
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2014_5_1_a3/
%G en
%F EMJ_2014_5_1_a3
V. V. Kisil. The real and complex techniques in harmonic analysis from the point of view of covariant transform. Eurasian mathematical journal, Tome 5 (2014) no. 1, pp. 95-121. http://geodesic.mathdoc.fr/item/EMJ_2014_5_1_a3/

[1] A. Albargi, Some estimations for covariant transforms, in preparation

[2] S. T. Ali, J.-P. Antoine, J.-P. Gazeau, Coherent states, wavelets and their generalizations, Graduate Texts in Contemporary Physics, Springer-Verlag, New York, 2000 | DOI | MR

[3] F. Brackx, R. Delanghe, F. Sommen, Clifford Analysis, Advanced Publishing Program, Research Notes in Mathematics, 76, Pitman, Boston, MA, 1982 | MR | Zbl

[4] V. I. Burenkov, “Recent progress in studying the boundedness of classical operators of real analysis in general Morrey-type spaces, I”, Eurasian Math. J., 3:3 (2012), 11–32 | MR | Zbl

[5] J. G. Christensen, G. Ólafsson, “Examples of coorbit spaces for dual pairs”, Acta Appl. Math., 107:1–3 (2009), 25–48 | DOI | MR | Zbl

[6] R. R. Coifman, P. W. Jones, S. Semmes, “Two elementary proofs of the $L^2$ boundedness of Cauchy integrals on Lipschitz curves”, J. Amer. Math. Soc., 2:1–3 (1989), 553–564 | DOI | MR | Zbl

[7] M. Duflo, C. C. Moore, “On the regular representation of a nonunimodular locally compact group”, J. Functional Analysis, 21:2 (1976), 209–243 | DOI | MR | Zbl

[8] J. Dziubański, M. Preisner, “Riesz transform characterization of Hardy spaces associated with Schrödinger operators with compactly supported potentials”, Ark. Mat., 48:2 (2010), 301–310 | DOI | MR | Zbl

[9] A. S. Elmabrok, O. Hutník, “Induced representations of the affine group and intertwining operators. I: Analytical approach”, J. Phys. A, 45:24 (2012), 244017, 15 pp. | DOI | MR | Zbl

[10] H. G. Feichtinger, K. H. Gröchenig, “Banach spaces related to integrable group representations and their atomic decompositions, I”, J. Funct. Anal., 86:2 (1989), 307–340 | DOI | MR | Zbl

[11] G. Folland, E. Stein, Hardy Spaces on Homogeneous Group, Princeton University Press, Princeton, New Jersey, 1982 | MR | Zbl

[12] G. B. Folland, A Course in abstract harmonic analysis, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1995, viii, 276 pp. | MR | Zbl

[13] H. Führ, Abstract harmonic analysis of continuous wavelet transforms, Lecture Notes in Mathematics, 1863, Springer-Verlag, Berlin, 2005 | MR | Zbl

[14] J. B. Garnett, Bounded analytic functions, Graduate Texts in Mathematics, 236, first edition, Springer, New York, 2007 | MR

[15] L. Grafakos, Classical Fourier analysis, Graduate Texts in Mathematics, 249, second edition, Springer, New York, 2008 | MR | Zbl

[16] A. A. Kirillov, Elements of the theory of representations, Translated from the Russian by Edwin Hewitt, Grundlehren der Mathematischen Wissenschaften, 220, Springer-Verlag, Berlin, 1976 | DOI | MR | Zbl

[17] A. A. Kirillov, Lectures on the orbit method, Graduate Studies in Mathematics, 64, American Mathematical Society, Providence, RI, 2004 | MR | Zbl

[18] A. A. Kirillov, A. D. Gvishiani, Theorems and problems in functional analysis, Problem Books in Mathematics, Springer-Verlag, New York, 1982 | DOI | MR | Zbl

[19] V. V. Kisil, “Relative convolutions. I: Properties and applications”, Adv. Math., 147:1 (1999), 35–73 | DOI | MR | Zbl

[20] V. V. Kisil, “Wavelets in Banach spaces”, Acta Appl. Math., 59:1 (1999), 79–109 | DOI | MR | Zbl

[21] V. V. Kisil, “Spectrum as the support of functional calculus”, Functional analysis and its applications, North-Holland Math. Stud., 197, Elsevier, Amsterdam, 133–141 | DOI | MR | Zbl

[22] V. V. Kisil, “Erlangen program at large. 1: Geometry of invariants”, SIGMA, 6 (2010), 076, 45 pp. | MR | Zbl

[23] V. V. Kisil, “Wavelets beyond admissibility”, Progress in Analysis and its Applications, eds. M. Ruzhansky, J. Wirth, World Sci. Publ., Hackensack, NJ, 2010, 219–225 | DOI | MR | Zbl

[24] V. V. Kisil, “Covariant transform”, Journal of Physics: Conference Series, 284:1 (2011), 012038 | DOI

[25] V. V. Kisil, “Erlangen programme at large: an overview”, Advances in Applied Analysis, 1, eds. S. Rogosin, A. Koroleva, Birkhäuser Verlag, Basel, 2012, 1–94 | DOI | MR | Zbl

[26] V. V. Kisil, Geometry of Mobius transformations: elliptic, parabolic and hyperbolic actions of $\mathrm{SL_2}(\mathbf{R})$, Includes a live DVD, Imperial College Press, London, 2012 | MR

[27] V. V. Kisil, “Operator covariant transform and local principle”, J. Phys. A: Math. Theor., 45 (2012), 244022 | DOI | MR | Zbl

[28] V. V. Kisil, “Induced representations and hypercomplex numbers”, Adv. Appl. Clifford Algebras, 23:2 (2013), 417–440 | DOI | MR | Zbl

[29] V. V. Kisil, “Calculus of operators: covariant transform and relative convolutions”, Banach J. Math. Anal., 8:2 (2014), 156–184 | DOI | MR | Zbl

[30] J. R. Klauder, B.-S. Skagerstam (eds.), Coherent states, World Scientific Publishing Co., Singapore, 1985 | MR | Zbl

[31] P. Koosis, Introduction to $H_p$ spaces, With two appendices by V. P. Havin, Cambridge Tracts in Mathematics, 115, second edition, Cambridge University Press, Cambridge, 1998 | MR | Zbl

[32] S. G. Krantz, Explorations in harmonic analysis. With applications to complex function theory and the Heisenberg group, With the assistance of L. Lee, Applied and Numerical Harmonic Analysis, Birkhäuser Boston Inc., Boston, MA, 2009 | DOI | MR | Zbl

[33] E. Liflyand, “Hausdorff operators on Hardy spaces”, Eurasian Math. J., 4:4 (2013), 101–141 | MR

[34] A. McIntosh, “Clifford algebras, Fourier theory, singular integral operators, and partial differential equations on Lipschitz domains”, Clifford Algebras in Analysis and Related Topics, ed. J. Ryan, CRC Press, Boca Raton, 1995, 33–88 | MR

[35] V. V. Mityushev, S. V. Rogosin, Constructive methods for linear and nonlinear boundary value problems for analytic functions. Theory and applications, Chapman Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, 108, Chapman Hall/CRC, Boca Raton, FL, 2000 | MR | Zbl

[36] N. K. Nikolski, Operators, functions, and systems: an easy reading, v. 1, Mathematical Surveys and Monographs, 92, Hardy, Hankel, and Toeplitz, American Mathematical Society, Providence, RI, 2002 | MR | Zbl

[37] N. K. Nikolski, Operators, functions, and systems: an easy reading, Translated from the French by Andreas Hartmann, v. 2, Mathematical Surveys and Monographs, 93, Model operators and systems, ed. N. K. Nikolski, American Mathematical Society, Providence, RI, 2002 | MR | Zbl

[38] A. Perelomov, Generalized coherent states and their applications, Texts and Monographs in Physics, Springer-Verlag, Berlin, 1986 | MR | Zbl

[39] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, 30, Princeton University Press, Princeton, N.J., 1970 | MR

[40] E. M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series, 43, Princeton University Press, Princeton, NJ, 1993 ; With the assistance of T. S. Murphy, Monographs in Harmonic Analysis, III | MR | Zbl

[41] D. Yang, D. Yang, X. Fu, “The Hardy space $H^1$ on non-homogeneous spaces and its applications — a survey”, Eurasian Math. J., 4:2 (2013), 104–139 | MR | Zbl

[42] A. Zygmund, Trigonometric series, With a foreword by R. A. Fefferman, v. I, II, Cambridge Mathematical Library, third edition, Cambridge University Press, Cambridge, 2002 | MR | Zbl