On a certain class of operator algebras and their derivations
Eurasian mathematical journal, Tome 5 (2014) no. 1, pp. 82-94.

Voir la notice de l'article provenant de la source Math-Net.Ru

Given a von Neumann algebra $M$ with a faithful normal finite trace, we introduce the so-called finite tracial algebra $M_f$ as the intersection of $L_p$-spaces $L_p(M,\mu)$ over all $p\geqslant1$ and over all faithful normal finite traces $\mu$ on $M$. Basic algebraic and topological properties of finite tracial algebras are studied. We prove that all derivations on these algebras are inner.
@article{EMJ_2014_5_1_a2,
     author = {Sh. A. Ayupov and R. Z. Abdullaev and K. K. Kudaybergenov},
     title = {On a certain class of operator algebras and their derivations},
     journal = {Eurasian mathematical journal},
     pages = {82--94},
     publisher = {mathdoc},
     volume = {5},
     number = {1},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2014_5_1_a2/}
}
TY  - JOUR
AU  - Sh. A. Ayupov
AU  - R. Z. Abdullaev
AU  - K. K. Kudaybergenov
TI  - On a certain class of operator algebras and their derivations
JO  - Eurasian mathematical journal
PY  - 2014
SP  - 82
EP  - 94
VL  - 5
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2014_5_1_a2/
LA  - en
ID  - EMJ_2014_5_1_a2
ER  - 
%0 Journal Article
%A Sh. A. Ayupov
%A R. Z. Abdullaev
%A K. K. Kudaybergenov
%T On a certain class of operator algebras and their derivations
%J Eurasian mathematical journal
%D 2014
%P 82-94
%V 5
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2014_5_1_a2/
%G en
%F EMJ_2014_5_1_a2
Sh. A. Ayupov; R. Z. Abdullaev; K. K. Kudaybergenov. On a certain class of operator algebras and their derivations. Eurasian mathematical journal, Tome 5 (2014) no. 1, pp. 82-94. http://geodesic.mathdoc.fr/item/EMJ_2014_5_1_a2/

[1] R. Z. Abdullaev, “The dual space for Arens algebra”, Uzbek. Math. J., 1997, no. 2, 3–7 | MR | Zbl

[2] R. Z. Abdullaev, “Isomorphism of Arens algebras”, Siberian J. Industrial Math., 1:2 (1998), 3–13 | MR | Zbl

[3] S. Albeverio, Sh. A. Ayupov, K. K. Kudaybergenov, “Non-commutative Arens algebras and their derivations”, J. Func. Anal., 253:1 (2007), 287–302 | DOI | MR | Zbl

[4] S. Albeverio, Sh. A. Ayupov, K. K. Kudaybergenov, “Structure of derivations on various algebras of measurable operators for type I von Neumann algebras”, J. Func. Anal., 256:9 (2009), 2917–2943 | DOI | MR | Zbl

[5] Sh. A. Ayupov, K. K. Kudaybergenov, “Innerness of derivations on subalgebras of measurable operators”, Lobachevskii J. Math., 29:3 (2008), 60–67 | DOI | MR | Zbl

[6] R. Arens, “The space $L^\omega(0,1)$ and convex topological rings”, Bull. Amer. Math. Soc., 52 (1946), 931–935 | DOI | MR | Zbl

[7] A. F. Ber, B. de Pagter, F. A. Sukochev, “Derivations in algebras of operator-valued functions”, J. Operator Theory, 66:2 (2011), 261–300 | MR | Zbl

[8] A. E. Gutman, A. G. Kusraev, S. S. Kutateladze, “The Wickstead problem”, Sib. Electron. Mat. Izv., 5 (2008), 293–333 | MR | Zbl

[9] A. Inoue, “On class of unbounded operators, II”, Pacific J. Math., 66 (1976), 411–431 | DOI | MR | Zbl

[10] W. Kunze, “Zur algebraischen struktur der $GC^*$-algebren”, Mathematische Nachrichten, 88:1 (1979), 7–11 | DOI | MR | Zbl

[11] I. Segal, “A non-commutative extension of abstract integration”, Ann. of Math., 57 (1953), 401–457 | DOI | MR | Zbl

[12] M. Takesaki, Theory of operator algebras, v. I, Springer, New-York–Heidelberg–Berlin, 1979 | MR

[13] F. J. Yeadon, “Non-commutative $L_p$-spaces”, Math. Proc. Cambridge Phil. Soc., 77:1 (1975), 91–102 | DOI | MR | Zbl

[14] K. Yosida, Functional Analysis, Springer-Verlag, New York, 1968 | MR