On a certain class of operator algebras and their derivations
Eurasian mathematical journal, Tome 5 (2014) no. 1, pp. 82-94

Voir la notice de l'article provenant de la source Math-Net.Ru

Given a von Neumann algebra $M$ with a faithful normal finite trace, we introduce the so-called finite tracial algebra $M_f$ as the intersection of $L_p$-spaces $L_p(M,\mu)$ over all $p\geqslant1$ and over all faithful normal finite traces $\mu$ on $M$. Basic algebraic and topological properties of finite tracial algebras are studied. We prove that all derivations on these algebras are inner.
@article{EMJ_2014_5_1_a2,
     author = {Sh. A. Ayupov and R. Z. Abdullaev and K. K. Kudaybergenov},
     title = {On a certain class of operator algebras and their derivations},
     journal = {Eurasian mathematical journal},
     pages = {82--94},
     publisher = {mathdoc},
     volume = {5},
     number = {1},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2014_5_1_a2/}
}
TY  - JOUR
AU  - Sh. A. Ayupov
AU  - R. Z. Abdullaev
AU  - K. K. Kudaybergenov
TI  - On a certain class of operator algebras and their derivations
JO  - Eurasian mathematical journal
PY  - 2014
SP  - 82
EP  - 94
VL  - 5
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2014_5_1_a2/
LA  - en
ID  - EMJ_2014_5_1_a2
ER  - 
%0 Journal Article
%A Sh. A. Ayupov
%A R. Z. Abdullaev
%A K. K. Kudaybergenov
%T On a certain class of operator algebras and their derivations
%J Eurasian mathematical journal
%D 2014
%P 82-94
%V 5
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2014_5_1_a2/
%G en
%F EMJ_2014_5_1_a2
Sh. A. Ayupov; R. Z. Abdullaev; K. K. Kudaybergenov. On a certain class of operator algebras and their derivations. Eurasian mathematical journal, Tome 5 (2014) no. 1, pp. 82-94. http://geodesic.mathdoc.fr/item/EMJ_2014_5_1_a2/