On a certain class of operator algebras and their derivations
Eurasian mathematical journal, Tome 5 (2014) no. 1, pp. 82-94
Voir la notice de l'article provenant de la source Math-Net.Ru
Given a von Neumann algebra $M$ with a faithful normal finite trace, we introduce the so-called finite tracial algebra $M_f$ as the intersection of $L_p$-spaces $L_p(M,\mu)$ over all $p\geqslant1$ and over all faithful normal finite traces $\mu$ on $M$. Basic algebraic and topological properties of finite tracial algebras are studied. We prove that all derivations on these algebras are inner.
@article{EMJ_2014_5_1_a2,
author = {Sh. A. Ayupov and R. Z. Abdullaev and K. K. Kudaybergenov},
title = {On a certain class of operator algebras and their derivations},
journal = {Eurasian mathematical journal},
pages = {82--94},
publisher = {mathdoc},
volume = {5},
number = {1},
year = {2014},
language = {en},
url = {http://geodesic.mathdoc.fr/item/EMJ_2014_5_1_a2/}
}
TY - JOUR AU - Sh. A. Ayupov AU - R. Z. Abdullaev AU - K. K. Kudaybergenov TI - On a certain class of operator algebras and their derivations JO - Eurasian mathematical journal PY - 2014 SP - 82 EP - 94 VL - 5 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/EMJ_2014_5_1_a2/ LA - en ID - EMJ_2014_5_1_a2 ER -
Sh. A. Ayupov; R. Z. Abdullaev; K. K. Kudaybergenov. On a certain class of operator algebras and their derivations. Eurasian mathematical journal, Tome 5 (2014) no. 1, pp. 82-94. http://geodesic.mathdoc.fr/item/EMJ_2014_5_1_a2/