H\"older analysis and geometry on Banach spaces: homogeneous homeomorphisms and commutative group structures, approximation and Tzar’kov’s phenomenon. Part I
Eurasian mathematical journal, Tome 5 (2014) no. 1, pp. 7-60.

Voir la notice de l'article provenant de la source Math-Net.Ru

In an explicit quantitative and often precise manner, we construct the homogeneous Hölder homeomorphisms and study the approximation of uniformly continuous mappings by the Hölder–Lipschitz ones between the pairs of abstract and concrete metric and (quasi) Banach spaces including, in particular, Banach lattices, general non-commutative $L_p$-spaces, the classes $IG$ and $IG_+$ of independently generated spaces (for example, non-commutative-valued Bochner–Lebesgue spaces) and anisotropic Sobolev, Nikol’skii–Besov and Lizorkin–Triebel spaces of functions on an open subset or a class of domains of an Euclidean space defined with underlying mixed $L_p$-norms in terms of differences, local approximations by polynomials, wavelet decompositions and systems of closed operators, such as holomorphic functional calculus and Fourier multipliers of smooth Littlewood–Paley decompositions. Our approach also allows to treat both the finite (as in the initial and/or boundary value problems in PDE) and infinite $l_p$-sums of these spaces, their duals and “Bochnerizations”. Many results are automatically extended to the setting of the function spaces with variable smoothness, including the weighted ones. The sharpness of the approximation results, shown for the majority of the pairs under some mild conditions and underpinning the corresponding sharpness of the Hölder continuity exponents of the homogeneous homeomorphisms, indicates that the range of the exponents is often a proper subset of $(0,1]$, that is the presence of Tsar’kov’s phenomenon. We also consider the approximation by the mappings taking the values in the convex envelope of the range of the original approximated mapping. The negative results on the absence of uniform embeddings of the balls of some function spaces, particularly including $BMO$, $VMO$, Nikol’skii–Besov and Lizorkin–Triebel spaces with $q=\infty$ and their $VMO$-like separable subspaces, into any Hilbert space are established. Relying on the solution to the problem of the global Hölder continuity of metric projections and the existence of the Hölder continuous homogeneous right inverses of closed surjective operators and retractions onto closed convex subsets, as well as our results on the bounded extendability of the Hölder–Lipschitz mappings and re-homogenisation technique, we develop and employ our key explicit quantitative tools, such as the global (on arbitrary bounded subsets) Hölder continuity of the duality mapping and Lozanovskii factorisation, the answer to the three-space problem for the Hölder classification of infinite-dimensional spheres, the Hölder continuous counterpart of the Kalton–Pełczyńki decomposition method, the Hölder continuity of the homogeneous homeomorphism induced by the complex interpolation method and such counterparts of the classical Mazur mappings as the abstract and simple Mazur ascent and complex Mazur descent. Important role is also played by the study of the local unconditional structure and other complementability results, as well as the existence of equivalent geometrically friendly norms.
@article{EMJ_2014_5_1_a0,
     author = {S. S. Ajiev},
     title = {H\"older analysis and geometry on {Banach} spaces: homogeneous homeomorphisms and commutative group structures, approximation and {Tzar{\textquoteright}kov{\textquoteright}s} phenomenon. {Part} {I}},
     journal = {Eurasian mathematical journal},
     pages = {7--60},
     publisher = {mathdoc},
     volume = {5},
     number = {1},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2014_5_1_a0/}
}
TY  - JOUR
AU  - S. S. Ajiev
TI  - H\"older analysis and geometry on Banach spaces: homogeneous homeomorphisms and commutative group structures, approximation and Tzar’kov’s phenomenon. Part I
JO  - Eurasian mathematical journal
PY  - 2014
SP  - 7
EP  - 60
VL  - 5
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2014_5_1_a0/
LA  - en
ID  - EMJ_2014_5_1_a0
ER  - 
%0 Journal Article
%A S. S. Ajiev
%T H\"older analysis and geometry on Banach spaces: homogeneous homeomorphisms and commutative group structures, approximation and Tzar’kov’s phenomenon. Part I
%J Eurasian mathematical journal
%D 2014
%P 7-60
%V 5
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2014_5_1_a0/
%G en
%F EMJ_2014_5_1_a0
S. S. Ajiev. H\"older analysis and geometry on Banach spaces: homogeneous homeomorphisms and commutative group structures, approximation and Tzar’kov’s phenomenon. Part I. Eurasian mathematical journal, Tome 5 (2014) no. 1, pp. 7-60. http://geodesic.mathdoc.fr/item/EMJ_2014_5_1_a0/

[1] S. S. Ajiev, “Characterization of the function spaces $B_{p,q}^s(G)$, $L_{p,q}^s(G)$ and $W_p^s(G)$, and embeddings into $\mathrm{BMO}(G)$”, Proc. Steklov Inst. Math., 214, no. 3, 1996, 1–18

[2] S. S. Ajiev, “Characterizations of $B_{p,q}^s(G)$, $L_{p,q}^s(G)$, $W_p^s(G)$ and other function spaces”, Proc. Steklov Math. Inst., 227, no. 4, 1999, 1–36

[3] S. S. Ajiev, On noncomplementable subspaces and noncompact embeddings of certain function spaces, No 1600-BOO, VINITI, M., 2000, 36 pp.

[4] S. S. Ajiev, “Phillips-type theorems for Nikol'skii and certain other spaces”, Proc. Steklov Math. Inst., 232, no. 1, 2001, 27–38 | Zbl

[5] S. S. Ajiev, “On Chebyshev centres, retractions, metric projections and homogeneous inverses for Besov, Lizorkin–Triebel, Sobolev and other Banach spaces”, East J. Approx., 15:3 (2009), 375–428 | MR

[6] S. S. Ajiev, “On concentration, deviation and Dvoretzky's theorem for Besov, Lizorkin–Triebel and other spaces”, Compl. Var. Ellipt. Eq., 55:8–10, Special issue dedicated to Gérard Bourdaud (2010), 693–726 | DOI | MR | Zbl

[7] S. S. Ajiev, “Quantitative Hahn–Banach theorems and isometric extensions for wavelet and other Banach spaces”, Axioms, 2 (2013), 224–270 | DOI | Zbl

[8] S. S. Ajiev, Optimal non-dual local non-stationary multiresolution analysis for anisotropic function spaces, submitted, 52 pp.

[9] S. S. Ajiev, Asymmetric convexity and smoothness: quantitative Lyapunov theorem and Lozanovskii factorisation, Markov chains and Walsh chaos, submitted, 64 pp.

[10] S. S. Ajiev, Interpolation and bounded extension of Hölder–Lipschitz mappings between function, non-commutative and other Banach spaces, submitted, 35 pp.

[11] S. S. Ajiev, Copies of sequence spaces and basic properties of function spaces, submitted, 47 pp.

[12] S. S. Ajiev, Elements of quantitative functional analysis for function and other Banach spaces, submitted book manuscript, 222 pp.

[13] K. M. Ball, “Markov chains, Riesz transforms and Lipschitz maps”, Geom. Funct. Anal., 92:2 (1992), 137–172 | DOI | MR

[14] K. M. Ball, E. A. Carlen, E. H. Lieb, “Sharp uniform convexity and smoothness inequalities for trace norms”, Invent. Math., 115:3 (1994), 463–482 | DOI | MR | Zbl

[15] Y. Benyamini, J. Lindenstrauss, Geometric nonlinear functional analysis, v. 1, Colloquium Publications, 48, American Mathematical Society, Providence, Rhode Island, 2000, 489+xii pp. | MR | Zbl

[16] J. Bergh, J. Löfström, Interpolation spaces. An introduction, Die Grundlehren der mathematischen Wissenschaften, 223, Springer-Verlag, Berlin–Heidelberg–New York–Tokyo, 1976 | DOI | MR | Zbl

[17] O. V. Besov, “On the Sobolev–Liouville and Lizorkin–Triebel spaces on a domain”, Trudy Matem. Inst. Steklov., 192, 1990, 20–34 | MR

[18] O. V. Besov, “Interpolation of the spaces of differentiable functions on a domain”, Trudy Matem. Inst. Steklov, 214, 1997, 59–82 | MR | Zbl

[19] Proc. Steklov Math. Inst., 248:1 (2005), 47–58 | MR | Zbl

[20] O. V. Besov, V. P. Il'in, S. M. Nikol'skiy, Integral representations of functions and embedding theorems, Nauka. Fizmatgiz, M., 1996 ; 1st Ed., Nauka, M., 1975 | MR | Zbl

[21] J. Bourgain, “Remarks on the extension of Lipschitz maps defined on discrete nets and uniform homeomorphisms”, Israel GAFA Seminar, 1985–1986, Lect. Notes Math., 1267, eds. J. Lindenstrauss, V. D. Milman, 1987, 157–167 | DOI | MR | Zbl

[22] V. I. Burenkov, Sobolev Spaces on Domains, Teubner Texts in Mathematics, 137, B. G. Teubner Verlagsgesellschaft GmbH, Stuttgart, 1998 | DOI | MR | Zbl

[23] B. Bollobas, I. Leader, A. J. Radcliffe, “Reverse Kleitman inequalities”, Proc. London Math. Soc., 58 (1989), 153–168 | DOI | MR | Zbl

[24] A. P. Calderón, “Intermediate spaces and interpolation, the complex method”, Studia Math., 24 (1964), 113–190 | MR | Zbl

[25] A. P. Caldéron, A. Torchinski, “Parabolic maximal functions associated with distributions. I; II”, Adv. Math., 16 (1975), 1–64 ; 24 (1977), 101–171 | DOI | MR | Zbl | DOI | MR | Zbl

[26] F. Chaatit, “On the uniform homeomorphisms of the unit spheres of certain Banach lattices”, Pacific J. Math., 168 (1995), 11–31 | DOI | MR | Zbl

[27] F. Cobos, “Some spaces in which martingale difference sequences are unconditional”, Bull. Polish Acad. Sci., 34:11–12 (1986), 695–703 | MR | Zbl

[28] M. Daher, “Homéomorphismes uniformes entre les sphères unité des espaces d'interpolation”, C. R. Acad. Sci Paris, Ser. I, 316 (1993), 1051–1054 | MR | Zbl

[29] R. A. DeVore, R. C. Sharpley, Maximal functions measuring smoothness, Mem. Amer. Math. Soc., 47, no. 293, 1984, viii+115 pp. | MR

[30] J. Diestel, H. Jarchow, A. Tonge, Absolutely summing operators, Cambridge University Press, Cambridge, 1995, 474+xv pp. | MR | Zbl

[31] J. Dixmier, “Formes linéaires sur un anneau d'opérateurs”, Bull. Soc. Math. Fr., 81 (1953), 222–245 | MR

[32] P. Enflo, “On a problem of Smirnov”, Ark. Math., 8 (1969), 107–109 | DOI | MR

[33] T. A. Gillespie, “Factorization in Banach function spaces”, Indag. Math., 43 (1981), 287–300 | DOI | MR | Zbl

[34] E. A. Gorelik, “The uniform nonequivalence of $l_p$ and $L_p$”, Israel J. Math., 87 (1994), 1–8 | DOI | MR | Zbl

[35] V. P. Il'in, “Function spaces $\mathcal{L}_{r,p,\theta}^{\lambda,a;b_s}$”, Zap. Nauchn. Sem. LOMI, 23, 1972, 33–40 | MR

[36] W. B. Johnson, J. Lindenstrauss, G. Schechtman, “Banach spaces determined by their uniform structure”, Geom. Func. Anal., 6 (1996), 430–470 | DOI | MR | Zbl

[37] A. Jonsson, H. Wallin, Function spaces on subset of $R^n$, Math. Rep., 2, no. 1, 1984, xiv+221 pp. | MR | Zbl

[38] M. I. Kadets, “A proof of topological equivalence of all separable infinite-dimensional Banach spaces”, Func. Anal. Appl., 1 (1967), 61–70 | DOI | MR | Zbl

[39] S. V. Konyagin, I. G. Tsar'kov, “On smoothing of maps in normed spaces”, Russian Math. Surveys, 43:4(262) (1988), 205–206 | DOI | MR

[40] M. A. Krasnosel'skii, Topological methods in the theory of nonlinear integral equations, International Series of Monographs on Pure and Applied Mathematics, 45, Pergamon Press, Oxford–London–New York–Paris, 1964, 395+xii pp. | MR

[41] J. Lindenstrauss, L. Tzafriri, Classical banach spaces, Ergebnisse, 97, Springer-Verlag, Berlin–Heidelberg–New York, 1979, 243+x pp. | MR | Zbl

[42] J. Lindenstrauss, L. Tzafriri, “On the complemented subspace problem”, Israel J. Math., 9 (1971), 263–269 | DOI | MR | Zbl

[43] G. Ya. Lozanovskii, “On some Banach lattices”, Siberian Math. J., 10 (1969), 584–599 | DOI | MR

[44] G. Ya. Lozanovskii, “On some Banach lattices, III”, Siberian Math. J., 13 (1972), 1304–1313 | MR

[45] R. P. Maleev, S. L. Trojanski, “Moduli of convexity and of smoothness for the spaces $L_{pq}$”, Annuaire Univ. Sofia Fac. Math., 66 (1971), 331–339 | MR

[46] S. Mazur, “Une remarque sur l'homéomorphie des champs fonctionnels”, Studia Math., 1 (1929), 83–85 | Zbl

[47] S. Mazur, S. Ulam, “Sur les transformations isométriques d'espaces vectoriels normés”, C. R. Acad. Sci. Paris, 194 (1932), 946–948

[48] Springer-Verlag, Berlin–Heidelberg–New York, 1975 | MR | Zbl

[49] E. Odell, Th. Schlumprecht, “The distortion problem”, Acta Math., 173 (1994), 259–281 | DOI | MR | Zbl

[50] V. I. Ovchinnikov, “Symmetric spaces of measurable operators”, Soviet. Math. Dokl., 11 (1970), 448–451 | Zbl

[51] V. I. Ovchinnikov, “Symmetric spaces of measurable operators”, Trudy Inst. Math. Voronezh State University, 3, 1971, 88–107 | MR

[52] J. Peetre, “On the theory of $L_{p,\lambda}$ spaces”, J. Funct. Anal., 4 (1969), 71–87 | DOI | MR | Zbl

[53] G. Pisier, Q. Xu, “Non-Commutative $L_p$-Spaces”, Handbook of the geometry of Banach spaces, v. II, Elsevier, Amsterdam–Tokyo, 2001, 1459–1517 | MR

[54] K. Przesławski, D. Yost, “Lipschitz retracts, selectors, and extensions”, Michigan. Math. J., 42 (1995), 555–571 | DOI | MR | Zbl

[55] M. Ribe, “On uniformly homeomorphic normed spaces”, Ark. Math., 14 (1976), 237–244 | DOI | MR | Zbl

[56] B. Simon, Trace ideals and their applications, Cambridge University Press, Cambridge, 1979 | MR | Zbl

[57] A. G. Skaletskiy, “Uniformly continuous selections in Fréchet spaces”, Vestnik Mosk. Univ. Ser. I Mat. Mekh., 40 (1985), 24–28 | MR

[58] S. L. Sobolev, Some applications of functional analysis in mathematical physics, Leningrad State University, Leningrad, 1950, 255 pp. ; Third edition, Nauka, M., 1988, 334 pp. ; English transl. by H. H. McFaden, Translations of Mathematical Monographs, 90, American Mathematical Society, Providence, Rhode Island, 1991, 286+viii pp. | MR | Zbl | MR | MR | Zbl

[59] A. F. Timan, “Deformation of metric spaces and certain related questions”, Russian Math. Surveys, 20:2 (1965), 53–88 | DOI | MR

[60] H. Triebel, “Local Approximation spaces”, Zeitschrift für Analysis und ihre Anwendungen, 8:3 (1989), 261–288 | MR | Zbl

[61] H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North-Holland Publishing Company, Amsterdam–Oxford, 1995, 528 pp. | MR

[62] I. G. Tsar'kov, “Theorems on global existence of an implicit function, and their applications”, Russian Acad. Sci. Dokl. Math., 45 (1992), 638–640 | MR | Zbl

[63] 79, 1994, 287–313 | DOI | MR | Zbl

[64] Math. Notes, 54 (1993), 957–967 | DOI | MR | Zbl

[65] I. G. Tsar'kov, “Smoothing of abstract functions”, Russian Acad. Sci. Sb. Math., 83:2 (1995), 405–430 | MR

[66] I. G. Tsar'kov, “Theorems on smoothness of right-inverse operator”, East Journal of approximations, 1:4 (1995), 441–450 | MR | Zbl

[67] L. Veselý, “Metric projections after renorming”, J. Approx. Th., 66 (1991), 72–82 | DOI | MR

[68] L. P. Vlasov, “On the continuity of the metric projection”, Matem. Zametki, 30:6 (1981), 813–818 ; 957 | MR | Zbl

[69] A. Weston, Some non-linear problems in functional analysis, Ph. D. thesis, Kent State Univ., 1993