Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2014_5_1_a0, author = {S. S. Ajiev}, title = {H\"older analysis and geometry on {Banach} spaces: homogeneous homeomorphisms and commutative group structures, approximation and {Tzar{\textquoteright}kov{\textquoteright}s} phenomenon. {Part} {I}}, journal = {Eurasian mathematical journal}, pages = {7--60}, publisher = {mathdoc}, volume = {5}, number = {1}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2014_5_1_a0/} }
TY - JOUR AU - S. S. Ajiev TI - H\"older analysis and geometry on Banach spaces: homogeneous homeomorphisms and commutative group structures, approximation and Tzar’kov’s phenomenon. Part I JO - Eurasian mathematical journal PY - 2014 SP - 7 EP - 60 VL - 5 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/EMJ_2014_5_1_a0/ LA - en ID - EMJ_2014_5_1_a0 ER -
%0 Journal Article %A S. S. Ajiev %T H\"older analysis and geometry on Banach spaces: homogeneous homeomorphisms and commutative group structures, approximation and Tzar’kov’s phenomenon. Part I %J Eurasian mathematical journal %D 2014 %P 7-60 %V 5 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/EMJ_2014_5_1_a0/ %G en %F EMJ_2014_5_1_a0
S. S. Ajiev. H\"older analysis and geometry on Banach spaces: homogeneous homeomorphisms and commutative group structures, approximation and Tzar’kov’s phenomenon. Part I. Eurasian mathematical journal, Tome 5 (2014) no. 1, pp. 7-60. http://geodesic.mathdoc.fr/item/EMJ_2014_5_1_a0/
[1] S. S. Ajiev, “Characterization of the function spaces $B_{p,q}^s(G)$, $L_{p,q}^s(G)$ and $W_p^s(G)$, and embeddings into $\mathrm{BMO}(G)$”, Proc. Steklov Inst. Math., 214, no. 3, 1996, 1–18
[2] S. S. Ajiev, “Characterizations of $B_{p,q}^s(G)$, $L_{p,q}^s(G)$, $W_p^s(G)$ and other function spaces”, Proc. Steklov Math. Inst., 227, no. 4, 1999, 1–36
[3] S. S. Ajiev, On noncomplementable subspaces and noncompact embeddings of certain function spaces, No 1600-BOO, VINITI, M., 2000, 36 pp.
[4] S. S. Ajiev, “Phillips-type theorems for Nikol'skii and certain other spaces”, Proc. Steklov Math. Inst., 232, no. 1, 2001, 27–38 | Zbl
[5] S. S. Ajiev, “On Chebyshev centres, retractions, metric projections and homogeneous inverses for Besov, Lizorkin–Triebel, Sobolev and other Banach spaces”, East J. Approx., 15:3 (2009), 375–428 | MR
[6] S. S. Ajiev, “On concentration, deviation and Dvoretzky's theorem for Besov, Lizorkin–Triebel and other spaces”, Compl. Var. Ellipt. Eq., 55:8–10, Special issue dedicated to Gérard Bourdaud (2010), 693–726 | DOI | MR | Zbl
[7] S. S. Ajiev, “Quantitative Hahn–Banach theorems and isometric extensions for wavelet and other Banach spaces”, Axioms, 2 (2013), 224–270 | DOI | Zbl
[8] S. S. Ajiev, Optimal non-dual local non-stationary multiresolution analysis for anisotropic function spaces, submitted, 52 pp.
[9] S. S. Ajiev, Asymmetric convexity and smoothness: quantitative Lyapunov theorem and Lozanovskii factorisation, Markov chains and Walsh chaos, submitted, 64 pp.
[10] S. S. Ajiev, Interpolation and bounded extension of Hölder–Lipschitz mappings between function, non-commutative and other Banach spaces, submitted, 35 pp.
[11] S. S. Ajiev, Copies of sequence spaces and basic properties of function spaces, submitted, 47 pp.
[12] S. S. Ajiev, Elements of quantitative functional analysis for function and other Banach spaces, submitted book manuscript, 222 pp.
[13] K. M. Ball, “Markov chains, Riesz transforms and Lipschitz maps”, Geom. Funct. Anal., 92:2 (1992), 137–172 | DOI | MR
[14] K. M. Ball, E. A. Carlen, E. H. Lieb, “Sharp uniform convexity and smoothness inequalities for trace norms”, Invent. Math., 115:3 (1994), 463–482 | DOI | MR | Zbl
[15] Y. Benyamini, J. Lindenstrauss, Geometric nonlinear functional analysis, v. 1, Colloquium Publications, 48, American Mathematical Society, Providence, Rhode Island, 2000, 489+xii pp. | MR | Zbl
[16] J. Bergh, J. Löfström, Interpolation spaces. An introduction, Die Grundlehren der mathematischen Wissenschaften, 223, Springer-Verlag, Berlin–Heidelberg–New York–Tokyo, 1976 | DOI | MR | Zbl
[17] O. V. Besov, “On the Sobolev–Liouville and Lizorkin–Triebel spaces on a domain”, Trudy Matem. Inst. Steklov., 192, 1990, 20–34 | MR
[18] O. V. Besov, “Interpolation of the spaces of differentiable functions on a domain”, Trudy Matem. Inst. Steklov, 214, 1997, 59–82 | MR | Zbl
[19] Proc. Steklov Math. Inst., 248:1 (2005), 47–58 | MR | Zbl
[20] O. V. Besov, V. P. Il'in, S. M. Nikol'skiy, Integral representations of functions and embedding theorems, Nauka. Fizmatgiz, M., 1996 ; 1st Ed., Nauka, M., 1975 | MR | Zbl
[21] J. Bourgain, “Remarks on the extension of Lipschitz maps defined on discrete nets and uniform homeomorphisms”, Israel GAFA Seminar, 1985–1986, Lect. Notes Math., 1267, eds. J. Lindenstrauss, V. D. Milman, 1987, 157–167 | DOI | MR | Zbl
[22] V. I. Burenkov, Sobolev Spaces on Domains, Teubner Texts in Mathematics, 137, B. G. Teubner Verlagsgesellschaft GmbH, Stuttgart, 1998 | DOI | MR | Zbl
[23] B. Bollobas, I. Leader, A. J. Radcliffe, “Reverse Kleitman inequalities”, Proc. London Math. Soc., 58 (1989), 153–168 | DOI | MR | Zbl
[24] A. P. Calderón, “Intermediate spaces and interpolation, the complex method”, Studia Math., 24 (1964), 113–190 | MR | Zbl
[25] A. P. Caldéron, A. Torchinski, “Parabolic maximal functions associated with distributions. I; II”, Adv. Math., 16 (1975), 1–64 ; 24 (1977), 101–171 | DOI | MR | Zbl | DOI | MR | Zbl
[26] F. Chaatit, “On the uniform homeomorphisms of the unit spheres of certain Banach lattices”, Pacific J. Math., 168 (1995), 11–31 | DOI | MR | Zbl
[27] F. Cobos, “Some spaces in which martingale difference sequences are unconditional”, Bull. Polish Acad. Sci., 34:11–12 (1986), 695–703 | MR | Zbl
[28] M. Daher, “Homéomorphismes uniformes entre les sphères unité des espaces d'interpolation”, C. R. Acad. Sci Paris, Ser. I, 316 (1993), 1051–1054 | MR | Zbl
[29] R. A. DeVore, R. C. Sharpley, Maximal functions measuring smoothness, Mem. Amer. Math. Soc., 47, no. 293, 1984, viii+115 pp. | MR
[30] J. Diestel, H. Jarchow, A. Tonge, Absolutely summing operators, Cambridge University Press, Cambridge, 1995, 474+xv pp. | MR | Zbl
[31] J. Dixmier, “Formes linéaires sur un anneau d'opérateurs”, Bull. Soc. Math. Fr., 81 (1953), 222–245 | MR
[32] P. Enflo, “On a problem of Smirnov”, Ark. Math., 8 (1969), 107–109 | DOI | MR
[33] T. A. Gillespie, “Factorization in Banach function spaces”, Indag. Math., 43 (1981), 287–300 | DOI | MR | Zbl
[34] E. A. Gorelik, “The uniform nonequivalence of $l_p$ and $L_p$”, Israel J. Math., 87 (1994), 1–8 | DOI | MR | Zbl
[35] V. P. Il'in, “Function spaces $\mathcal{L}_{r,p,\theta}^{\lambda,a;b_s}$”, Zap. Nauchn. Sem. LOMI, 23, 1972, 33–40 | MR
[36] W. B. Johnson, J. Lindenstrauss, G. Schechtman, “Banach spaces determined by their uniform structure”, Geom. Func. Anal., 6 (1996), 430–470 | DOI | MR | Zbl
[37] A. Jonsson, H. Wallin, Function spaces on subset of $R^n$, Math. Rep., 2, no. 1, 1984, xiv+221 pp. | MR | Zbl
[38] M. I. Kadets, “A proof of topological equivalence of all separable infinite-dimensional Banach spaces”, Func. Anal. Appl., 1 (1967), 61–70 | DOI | MR | Zbl
[39] S. V. Konyagin, I. G. Tsar'kov, “On smoothing of maps in normed spaces”, Russian Math. Surveys, 43:4(262) (1988), 205–206 | DOI | MR
[40] M. A. Krasnosel'skii, Topological methods in the theory of nonlinear integral equations, International Series of Monographs on Pure and Applied Mathematics, 45, Pergamon Press, Oxford–London–New York–Paris, 1964, 395+xii pp. | MR
[41] J. Lindenstrauss, L. Tzafriri, Classical banach spaces, Ergebnisse, 97, Springer-Verlag, Berlin–Heidelberg–New York, 1979, 243+x pp. | MR | Zbl
[42] J. Lindenstrauss, L. Tzafriri, “On the complemented subspace problem”, Israel J. Math., 9 (1971), 263–269 | DOI | MR | Zbl
[43] G. Ya. Lozanovskii, “On some Banach lattices”, Siberian Math. J., 10 (1969), 584–599 | DOI | MR
[44] G. Ya. Lozanovskii, “On some Banach lattices, III”, Siberian Math. J., 13 (1972), 1304–1313 | MR
[45] R. P. Maleev, S. L. Trojanski, “Moduli of convexity and of smoothness for the spaces $L_{pq}$”, Annuaire Univ. Sofia Fac. Math., 66 (1971), 331–339 | MR
[46] S. Mazur, “Une remarque sur l'homéomorphie des champs fonctionnels”, Studia Math., 1 (1929), 83–85 | Zbl
[47] S. Mazur, S. Ulam, “Sur les transformations isométriques d'espaces vectoriels normés”, C. R. Acad. Sci. Paris, 194 (1932), 946–948
[48] Springer-Verlag, Berlin–Heidelberg–New York, 1975 | MR | Zbl
[49] E. Odell, Th. Schlumprecht, “The distortion problem”, Acta Math., 173 (1994), 259–281 | DOI | MR | Zbl
[50] V. I. Ovchinnikov, “Symmetric spaces of measurable operators”, Soviet. Math. Dokl., 11 (1970), 448–451 | Zbl
[51] V. I. Ovchinnikov, “Symmetric spaces of measurable operators”, Trudy Inst. Math. Voronezh State University, 3, 1971, 88–107 | MR
[52] J. Peetre, “On the theory of $L_{p,\lambda}$ spaces”, J. Funct. Anal., 4 (1969), 71–87 | DOI | MR | Zbl
[53] G. Pisier, Q. Xu, “Non-Commutative $L_p$-Spaces”, Handbook of the geometry of Banach spaces, v. II, Elsevier, Amsterdam–Tokyo, 2001, 1459–1517 | MR
[54] K. Przesławski, D. Yost, “Lipschitz retracts, selectors, and extensions”, Michigan. Math. J., 42 (1995), 555–571 | DOI | MR | Zbl
[55] M. Ribe, “On uniformly homeomorphic normed spaces”, Ark. Math., 14 (1976), 237–244 | DOI | MR | Zbl
[56] B. Simon, Trace ideals and their applications, Cambridge University Press, Cambridge, 1979 | MR | Zbl
[57] A. G. Skaletskiy, “Uniformly continuous selections in Fréchet spaces”, Vestnik Mosk. Univ. Ser. I Mat. Mekh., 40 (1985), 24–28 | MR
[58] S. L. Sobolev, Some applications of functional analysis in mathematical physics, Leningrad State University, Leningrad, 1950, 255 pp. ; Third edition, Nauka, M., 1988, 334 pp. ; English transl. by H. H. McFaden, Translations of Mathematical Monographs, 90, American Mathematical Society, Providence, Rhode Island, 1991, 286+viii pp. | MR | Zbl | MR | MR | Zbl
[59] A. F. Timan, “Deformation of metric spaces and certain related questions”, Russian Math. Surveys, 20:2 (1965), 53–88 | DOI | MR
[60] H. Triebel, “Local Approximation spaces”, Zeitschrift für Analysis und ihre Anwendungen, 8:3 (1989), 261–288 | MR | Zbl
[61] H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North-Holland Publishing Company, Amsterdam–Oxford, 1995, 528 pp. | MR
[62] I. G. Tsar'kov, “Theorems on global existence of an implicit function, and their applications”, Russian Acad. Sci. Dokl. Math., 45 (1992), 638–640 | MR | Zbl
[63] 79, 1994, 287–313 | DOI | MR | Zbl
[64] Math. Notes, 54 (1993), 957–967 | DOI | MR | Zbl
[65] I. G. Tsar'kov, “Smoothing of abstract functions”, Russian Acad. Sci. Sb. Math., 83:2 (1995), 405–430 | MR
[66] I. G. Tsar'kov, “Theorems on smoothness of right-inverse operator”, East Journal of approximations, 1:4 (1995), 441–450 | MR | Zbl
[67] L. Veselý, “Metric projections after renorming”, J. Approx. Th., 66 (1991), 72–82 | DOI | MR
[68] L. P. Vlasov, “On the continuity of the metric projection”, Matem. Zametki, 30:6 (1981), 813–818 ; 957 | MR | Zbl
[69] A. Weston, Some non-linear problems in functional analysis, Ph. D. thesis, Kent State Univ., 1993