Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2013_4_4_a5, author = {Yu. O. Koroleva and M. H. Str\"omqvist}, title = {$\Gamma$-convergence of oscillating thin obstacles}, journal = {Eurasian mathematical journal}, pages = {88--100}, publisher = {mathdoc}, volume = {4}, number = {4}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2013_4_4_a5/} }
Yu. O. Koroleva; M. H. Strömqvist. $\Gamma$-convergence of oscillating thin obstacles. Eurasian mathematical journal, Tome 4 (2013) no. 4, pp. 88-100. http://geodesic.mathdoc.fr/item/EMJ_2013_4_4_a5/
[1] H. Attouch, C. Picard, “Variational inequalities with varying obstacles: the general form of the problem”, J. Funct. Anal., 50:3 (1983), 329–386 | DOI | MR
[2] D. Cioranescu, F. Murat, “A strange term coming from nowhere”, Topics in the mathematical modelling of composite materials, Progr. Nonlinear Differential Equations Appl., 31, Birkhäuser Boston, Boston, MA, 1997, 45–93 | MR | Zbl
[3] G. Dal Maso, P. Trebeschi, “$\Gamma$-limit of periodic obstacles”, Acta Appl. Math., 65:1–3, Special issue dedicated to Antonio Avantaggiati on the occasion of his 70th birthday (2001), 207–215 | MR | Zbl
[4] E. De Giorgi, G. Dal Maso, P. Longo, “$\Gamma$-limits of obstacles”, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8), 68:6 (1980), 481–487 | MR | Zbl
[5] D. Kinderlehrer, G. Stampacchia, An introduction to variational inequalities and their applications, Classics in Applied Mathematics, 31, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2000, Reprint of the 1980 original | MR | Zbl
[6] K.-A. Lee, M. Strömqvist, M. Yoo, Highly oscillating thin obstacles, 2012, arXiv: 1204.3462 | MR