Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2013_4_4_a3, author = {M. L. Goldman}, title = {Some equivalent criteria for the boundedness of {Hardy-type} operators on the cone of quasimonotone functions}, journal = {Eurasian mathematical journal}, pages = {43--63}, publisher = {mathdoc}, volume = {4}, number = {4}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2013_4_4_a3/} }
TY - JOUR AU - M. L. Goldman TI - Some equivalent criteria for the boundedness of Hardy-type operators on the cone of quasimonotone functions JO - Eurasian mathematical journal PY - 2013 SP - 43 EP - 63 VL - 4 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/EMJ_2013_4_4_a3/ LA - en ID - EMJ_2013_4_4_a3 ER -
M. L. Goldman. Some equivalent criteria for the boundedness of Hardy-type operators on the cone of quasimonotone functions. Eurasian mathematical journal, Tome 4 (2013) no. 4, pp. 43-63. http://geodesic.mathdoc.fr/item/EMJ_2013_4_4_a3/
[1] G. Bennett, K.-G. Grosse-Erdmann, “Weighted Hardy inequalities for decreasing sequences and functions”, Math. Annalen, 334 (2006), 489–531 | DOI | MR | Zbl
[2] V. I. Burenkov, M. L. Goldman, “Calculation of the norm of positive operator on the cone of monotone functions”, Proc. of the Steklov Inst. Math., 210, 1995, 47–65 | MR | Zbl
[3] M. Carro, A. Gogatishvili, J. Martin, L. Pick, “Weighted Inequalities Involving Two Hardy Operators with Applications to Embeddings of Function Spaces”, J. Operator Theory, 59:2 (2008), 309–332 | MR | Zbl
[4] A. Gogatishvili, M. Johansson, C. A. Okpoti, L.-E. Persson, “Characterization of embeddings in Lorentz spaces using a method of discretisation and anti-discretisation”, Bull. Austral. Math. Soc., 76 (2007), 69–92 | DOI | MR | Zbl
[5] M. L. Goldman, “Sharp Estimates of the Norms of Hardy-Type Operators on the Cone of Quasimonotone Functions”, Proc. of the Steklov Inst. Math., 232, 2001, 109–137 | MR | Zbl
[6] M. L. Goldman, “On equivalent criteria for the boundedness of Hardy type operators on the cone of decreasing functions”, Analysis Mathematica, 37:2 (2011), 83–102 | DOI | MR | Zbl
[7] M. L. Goldman, “Order-sharp Estimates for Hardy-Type Operators on the Cones of Quasimonotone Functions”, Eurasian Mathematical Journal, 2:3 (2011), 143–146 | MR | Zbl
[8] M. L. Goldman, Hardy type inequalities on the cone of quasimonotone functions, Research Report no. 98/31, Russian Acad. Sci., Far-East Branch Computer Center, 1998
[9] M. L. Goldman, “Order-sharp estimates for Hardy-type Operators on the Cones of Functions with Properties of Monotonicity”, Eurasian Mathematical Journal, 3:2 (2012), 53–84 | MR | Zbl