Best polynomial approximations and widths of certain classes of functions in the space~$L_2$
Eurasian mathematical journal, Tome 4 (2013) no. 3, pp. 120-126.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper exact values of the $n$-widths are found for the class of differentiable periodic functions in the space $L_2[0,2\pi]$, satisfying the condition $$ \left(\int^t_0\tau\Omega^{2/m}_m(f^{(r)},\tau)\,d\tau\right)^{m/2}\le\Phi(t), $$ where $0$, $m,n,r\in\mathbb N$, $\Omega_m(f^{(r)},\tau)$ is the generalized modulus of continuity of order $m$ of the derivative $f^{(r)}\in L_2[0,2\pi]$, and $\Phi(t)$, $0\le t\infty$ is a continuous non-decreasing function, such that $\Phi(0)=0$ and $\Phi(t)>0$ for $t>0$.
@article{EMJ_2013_4_3_a9,
     author = {G. A. Yusupov},
     title = {Best polynomial approximations and widths of certain classes of functions in the space~$L_2$},
     journal = {Eurasian mathematical journal},
     pages = {120--126},
     publisher = {mathdoc},
     volume = {4},
     number = {3},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2013_4_3_a9/}
}
TY  - JOUR
AU  - G. A. Yusupov
TI  - Best polynomial approximations and widths of certain classes of functions in the space~$L_2$
JO  - Eurasian mathematical journal
PY  - 2013
SP  - 120
EP  - 126
VL  - 4
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2013_4_3_a9/
LA  - en
ID  - EMJ_2013_4_3_a9
ER  - 
%0 Journal Article
%A G. A. Yusupov
%T Best polynomial approximations and widths of certain classes of functions in the space~$L_2$
%J Eurasian mathematical journal
%D 2013
%P 120-126
%V 4
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2013_4_3_a9/
%G en
%F EMJ_2013_4_3_a9
G. A. Yusupov. Best polynomial approximations and widths of certain classes of functions in the space~$L_2$. Eurasian mathematical journal, Tome 4 (2013) no. 3, pp. 120-126. http://geodesic.mathdoc.fr/item/EMJ_2013_4_3_a9/

[1] A. G. Babenko, “On the sharp constant in Jackson's inequality in $L^2$”, Matem. Notes, 39:5 (1986), 651–664 (in Russian) | MR | Zbl

[2] A. G. Babenko, N. I. Chernykh, V. T. Shevaldin, “Jackson–Stechkin's inequalities in $L_2$ with the trigonometric modulus of continuity”, Matem. Notes, 65:6 (1999), 928–932 (in Russian) | DOI | MR | Zbl

[3] N. I. Chernykh, “On the best approximation of periodic functions by trigonometric polynomials in $L_2$”, Matem. Notes, 2:5 (1967), 513–522 (in Russian) | MR | Zbl

[4] V. I. Ivanov, O. I. Smirnov, Jackson's constants and Young's constant in the spaces $L_p$, Tula State University, Tula, 1995 (in Russian)

[5] A. A. Ligun, “Sharp Jackson type inequalities for periodic functions in the space $L_2$”, Matem. Notes, 43:6 (1988), 757–769 (in Russian) | MR | Zbl

[6] A. Pinkus, $n$-Widths in approximation theory, Springer-Verlag, Berlin, 1985 | MR | Zbl

[7] K. V. Runovski, “On approximation by families of linear polynomial operators in the spaces $L_p$, $0

1$”, Matem. Sbornik, 185:8 (1994), 81–102 (in Russian) | MR | Zbl

[8] K. V. Runovski, H.-J. Schmeisser, “Methods of trigonometric approximation and generalized smoothness. I”, Eurasian Math. J., 2:3 (2011), 98–124 | MR | Zbl

[9] M. Sh. Shabozov, “Widths of certain classes of periodic differentiable functions in the space $L_2[0,2\pi]$”, Matem. Notes, 87:4 (2010), 616–623 (in Russian) | DOI | MR | Zbl

[10] E. A. Storozhenko, V. G. Krotov, P. Osvald, “Direct and inverse theorems of Jackson type in the spaces $L_p$, $0

1$”, Matem. Sbornik, 98(140):3(11) (1975), 395–415 (in Russian) | MR | Zbl

[11] L. V. Taikov, “Inequalities containing best approximations and modulus of continuity of functions in $L_2$”, Matem. Notes, 20:3 (1976), 433–438 (in Russian) | MR | Zbl

[12] V. M. Tikhomirov, Certain topics of the theory of approximations, Moscow State University, Moscow, 1976 (in Russian)

[13] S. B. Vakarchuk, “$K$-functionals and sharp values of the $n$-widths of certain classes in $L_2$”, Matem. Notes, 66:4 (1999), 494–499 (in Russian) | DOI | MR

[14] V. A. Yudin, “Diofant approximations in extremal problems”, Doklady Ac. Sci. USSR, 251:1 (1980), 54–57 (in Russian) | MR | Zbl