Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2013_4_3_a9, author = {G. A. Yusupov}, title = {Best polynomial approximations and widths of certain classes of functions in the space~$L_2$}, journal = {Eurasian mathematical journal}, pages = {120--126}, publisher = {mathdoc}, volume = {4}, number = {3}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2013_4_3_a9/} }
TY - JOUR AU - G. A. Yusupov TI - Best polynomial approximations and widths of certain classes of functions in the space~$L_2$ JO - Eurasian mathematical journal PY - 2013 SP - 120 EP - 126 VL - 4 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/EMJ_2013_4_3_a9/ LA - en ID - EMJ_2013_4_3_a9 ER -
G. A. Yusupov. Best polynomial approximations and widths of certain classes of functions in the space~$L_2$. Eurasian mathematical journal, Tome 4 (2013) no. 3, pp. 120-126. http://geodesic.mathdoc.fr/item/EMJ_2013_4_3_a9/
[1] A. G. Babenko, “On the sharp constant in Jackson's inequality in $L^2$”, Matem. Notes, 39:5 (1986), 651–664 (in Russian) | MR | Zbl
[2] A. G. Babenko, N. I. Chernykh, V. T. Shevaldin, “Jackson–Stechkin's inequalities in $L_2$ with the trigonometric modulus of continuity”, Matem. Notes, 65:6 (1999), 928–932 (in Russian) | DOI | MR | Zbl
[3] N. I. Chernykh, “On the best approximation of periodic functions by trigonometric polynomials in $L_2$”, Matem. Notes, 2:5 (1967), 513–522 (in Russian) | MR | Zbl
[4] V. I. Ivanov, O. I. Smirnov, Jackson's constants and Young's constant in the spaces $L_p$, Tula State University, Tula, 1995 (in Russian)
[5] A. A. Ligun, “Sharp Jackson type inequalities for periodic functions in the space $L_2$”, Matem. Notes, 43:6 (1988), 757–769 (in Russian) | MR | Zbl
[6] A. Pinkus, $n$-Widths in approximation theory, Springer-Verlag, Berlin, 1985 | MR | Zbl
[7] K. V. Runovski, “On approximation by families of linear polynomial operators in the spaces $L_p$, $0
1$”, Matem. Sbornik, 185:8 (1994), 81–102 (in Russian) | MR | Zbl[8] K. V. Runovski, H.-J. Schmeisser, “Methods of trigonometric approximation and generalized smoothness. I”, Eurasian Math. J., 2:3 (2011), 98–124 | MR | Zbl
[9] M. Sh. Shabozov, “Widths of certain classes of periodic differentiable functions in the space $L_2[0,2\pi]$”, Matem. Notes, 87:4 (2010), 616–623 (in Russian) | DOI | MR | Zbl
[10] E. A. Storozhenko, V. G. Krotov, P. Osvald, “Direct and inverse theorems of Jackson type in the spaces $L_p$, $0
1$”, Matem. Sbornik, 98(140):3(11) (1975), 395–415 (in Russian) | MR | Zbl[11] L. V. Taikov, “Inequalities containing best approximations and modulus of continuity of functions in $L_2$”, Matem. Notes, 20:3 (1976), 433–438 (in Russian) | MR | Zbl
[12] V. M. Tikhomirov, Certain topics of the theory of approximations, Moscow State University, Moscow, 1976 (in Russian)
[13] S. B. Vakarchuk, “$K$-functionals and sharp values of the $n$-widths of certain classes in $L_2$”, Matem. Notes, 66:4 (1999), 494–499 (in Russian) | DOI | MR
[14] V. A. Yudin, “Diofant approximations in extremal problems”, Doklady Ac. Sci. USSR, 251:1 (1980), 54–57 (in Russian) | MR | Zbl