Best polynomial approximations and widths of certain classes of functions in the space~$L_2$
Eurasian mathematical journal, Tome 4 (2013) no. 3, pp. 120-126

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper exact values of the $n$-widths are found for the class of differentiable periodic functions in the space $L_2[0,2\pi]$, satisfying the condition $$ \left(\int^t_0\tau\Omega^{2/m}_m(f^{(r)},\tau)\,d\tau\right)^{m/2}\le\Phi(t), $$ where $0$, $m,n,r\in\mathbb N$, $\Omega_m(f^{(r)},\tau)$ is the generalized modulus of continuity of order $m$ of the derivative $f^{(r)}\in L_2[0,2\pi]$, and $\Phi(t)$, $0\le t\infty$ is a continuous non-decreasing function, such that $\Phi(0)=0$ and $\Phi(t)>0$ for $t>0$.
@article{EMJ_2013_4_3_a9,
     author = {G. A. Yusupov},
     title = {Best polynomial approximations and widths of certain classes of functions in the space~$L_2$},
     journal = {Eurasian mathematical journal},
     pages = {120--126},
     publisher = {mathdoc},
     volume = {4},
     number = {3},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2013_4_3_a9/}
}
TY  - JOUR
AU  - G. A. Yusupov
TI  - Best polynomial approximations and widths of certain classes of functions in the space~$L_2$
JO  - Eurasian mathematical journal
PY  - 2013
SP  - 120
EP  - 126
VL  - 4
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2013_4_3_a9/
LA  - en
ID  - EMJ_2013_4_3_a9
ER  - 
%0 Journal Article
%A G. A. Yusupov
%T Best polynomial approximations and widths of certain classes of functions in the space~$L_2$
%J Eurasian mathematical journal
%D 2013
%P 120-126
%V 4
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2013_4_3_a9/
%G en
%F EMJ_2013_4_3_a9
G. A. Yusupov. Best polynomial approximations and widths of certain classes of functions in the space~$L_2$. Eurasian mathematical journal, Tome 4 (2013) no. 3, pp. 120-126. http://geodesic.mathdoc.fr/item/EMJ_2013_4_3_a9/