Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2013_4_3_a8, author = {R. M. Rzaev}, title = {Properties of singular integrals in terms of maximal functions measuring smoothness}, journal = {Eurasian mathematical journal}, pages = {107--119}, publisher = {mathdoc}, volume = {4}, number = {3}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2013_4_3_a8/} }
R. M. Rzaev. Properties of singular integrals in terms of maximal functions measuring smoothness. Eurasian mathematical journal, Tome 4 (2013) no. 3, pp. 107-119. http://geodesic.mathdoc.fr/item/EMJ_2013_4_3_a8/
[1] Yu. A. Brudnyj, “Spaces defined with the help of local approximation”, Trudy Mosk. Mat. Obsh., 24, 1971, 69–132 (in Russian)
[2] V. I. Burenkov, V. S. Guliyev, A. Serbetci, T. V. Tararykova, “Necessary and sufficient conditions for the boundedness of genuine singular integral operators in local Morrey-type spaces”, Eurasian Math. J., 1:1 (2010), 32–53 | MR | Zbl
[3] A. P. Calderon, “Estimates for singular integral operators in terms of maximal functions”, Studia Math., 44 (1972), 167–186 | MR
[4] A. P. Calderon, R. Scott, “Sobolev type inequalities for $p>0$”, Studia Math., 62 (1978), 75–92 | MR | Zbl
[5] S. Campanato, “Proprieta di holderianita di alcune classi di funzioni”, Ann. Scuola Norm. Sup. Pisa, 17 (1963), 175–188 | MR | Zbl
[6] R. DeVore, R. Sharpley, “Maximal functions measuring smoothness”, Mem. Amer. Math. Soc., 47:293 (1984), 1–115 | MR
[7] Ch. Fefferman, E. M. Stein, “$H^p$ spaces of several variables”, Acta Math., 129:3–4 (1972), 137–193 | DOI | MR | Zbl
[8] M. L. Gol'dman, “A criterion of imbedding for different metrics for isotropic Besov spaces with general moduli of continuity”, Proceedings of the Steklov Institute of Mathematics, 201, 1994, 155–181 | MR | Zbl
[9] B. Grevholm, “On the structure of the spaces $L^{p,\lambda}_k$”, Math. Scand., 26 (1970), 241–254 | MR | Zbl
[10] F. John, L. Nirenberg, “On functions of bounded mean oscillation”, Comm. Pure Appl. Math., 14 (1961), 415–426 | DOI | MR | Zbl
[11] V. I. Kolyada, “Estimates of maximal functions measuring local smoothness”, Analysis Mathematica, 25 (1999), 277–300 | DOI | MR | Zbl
[12] A. Korenovskii, “On local smoothness of the conjugate function”, Proc. of 4-th Saratov winter school “Theory of functions and approximations”, v. 2, 1990, 128–130 (in Russian)
[13] Y. Liang, Y. Sawano, T. Ullrich, D. Yang, W. Yuan, A new framework for generalized Besov-type and Triebel–Lizorkin-type spaces, 2012, 122 pp., arXiv: 1205.2963v.1[math.CA] | MR
[14] G. N. Meyers, “Mean oscillation over cubes and Holder continuity”, Proc. Amer. Math. Soc., 15 (1964), 717–721 | MR | Zbl
[15] E. Nakai, H. Sumitomo, “On generalized Riesz potentials and spaces of some smooth functions”, Scien. Math. Japan, 54 (2001), 463–472 | MR | Zbl
[16] J. Peetre, “On the theory of $L_{p,\lambda}$ spaces”, J. Functional Analysis, 4 (1969), 71–87 | DOI | MR | Zbl
[17] R. M. Rzaev, “On some properties of Riesz potentials in terms of the higher order mean oscillation”, Proc. Inst. Math. Mech. NAS Azerb., 4 (1996), 89–99 (in Russian)
[18] R. M. Rzaev, “On boundedness of multidimensional singular integral operator in spaces $BMO^k_{\varphi,\vartheta}$ and $H_{\varphi,\vartheta}$”, Proc. Azerb. Math. Soc., 2 (1996), 164–175 (in Russian) | MR
[19] R. M. Rzaev, “A multidimensional singular integral operator in spaces defined by conditions on the $k$-th order mean oscillation”, Dokl. Akad. Nauk (Russia), 356:5 (1997), 602–604 (in Russian) | MR | Zbl
[20] R. M. Rzaev, “Local properties of singular integrals in terms of mean oscillation”, Proc. Inst. Math. Mech. Acad. Sci. Azerb., 8 (1998), 179–185 (in Russian) | MR
[21] R. M. Rzaev, “On some maximal functions, measuring smoothness, and metric characteristics”, Trans. NAS Azerb., 19:5 (1999), 118–124 | MR
[22] R. M. Rzaev, “Inequalities for some metric characteristics”, Trans. NAS Azerb., 23:1 (2003), 173–180 | MR | Zbl
[23] R. M. Rzaev, “Properties of Riesz potential in terms of the maximal function $f^\#_{k,\varphi,p}$. Embedding theorems. Harmonic analysis”, Proc. Inst. Math. Mech. Nat. Acad. Sci. Azerb., 13 (2007), 281–294
[24] R. M. Rzaev, L. R. Aliyeva, “On local properties of functions and singular integrals in terms of the mean oscillation”, Cent. Eur. J. Math., 6:4 (2008), 595–609 | DOI | MR | Zbl
[25] V. V. Salaev, “Direct and inverse estimates for a singular Cauchy integral along a closed curve”, Math. Notes, 19:3 (1976), 221–231 | DOI | MR | Zbl
[26] D. Sarason, “Functions of vanishing mean oscillation”, Trans. Amer. Math. Soc., 207 (1975), 391–405 | DOI | MR | Zbl
[27] R. Sharpley, Y.-S. Shim, “Singular integrals on $C^\alpha_p$”, Studia. Math., 92:3 (1989), 285–293 | MR | Zbl
[28] S. Spanne, “Some function spaces defined using the mean oscillation over cubes”, Ann. Scuola Norm. Sup. Pisa, 19 (1965), 593–608 | MR | Zbl
[29] M. H. Taibleson, “On the theory of Lipschitz spaces of distributions on Euclidean $n$-space. I. Principal properties”, Indiana Univ. Math., 13:3 (1964), 407–479 | DOI | MR
[30] H. Triebel, “Local approximation spaces”, Zeitschrift für Analysis und ihre Anwendungen, 8:3 (1989), 261–288 | MR | Zbl
[31] D. C. Yang, S. B. Yang, “Elementary characterizations of generalized weighted Morrey–Campanato spaces”, Appl. Math. J. Chinese Univ., 25:2 (2010), 162–176 | DOI | MR | Zbl