Properties of singular integrals in terms of maximal functions measuring smoothness
Eurasian mathematical journal, Tome 4 (2013) no. 3, pp. 107-119.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is devoted to the study of certain maximal functions measuring smoothness, related function spaces, and properties of multidimensional singular integrals. In this work we essentially use the relation between maximal functions measuring smoothness and local oscillation of functions.
@article{EMJ_2013_4_3_a8,
     author = {R. M. Rzaev},
     title = {Properties of singular integrals in terms of maximal functions measuring smoothness},
     journal = {Eurasian mathematical journal},
     pages = {107--119},
     publisher = {mathdoc},
     volume = {4},
     number = {3},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2013_4_3_a8/}
}
TY  - JOUR
AU  - R. M. Rzaev
TI  - Properties of singular integrals in terms of maximal functions measuring smoothness
JO  - Eurasian mathematical journal
PY  - 2013
SP  - 107
EP  - 119
VL  - 4
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2013_4_3_a8/
LA  - en
ID  - EMJ_2013_4_3_a8
ER  - 
%0 Journal Article
%A R. M. Rzaev
%T Properties of singular integrals in terms of maximal functions measuring smoothness
%J Eurasian mathematical journal
%D 2013
%P 107-119
%V 4
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2013_4_3_a8/
%G en
%F EMJ_2013_4_3_a8
R. M. Rzaev. Properties of singular integrals in terms of maximal functions measuring smoothness. Eurasian mathematical journal, Tome 4 (2013) no. 3, pp. 107-119. http://geodesic.mathdoc.fr/item/EMJ_2013_4_3_a8/

[1] Yu. A. Brudnyj, “Spaces defined with the help of local approximation”, Trudy Mosk. Mat. Obsh., 24, 1971, 69–132 (in Russian)

[2] V. I. Burenkov, V. S. Guliyev, A. Serbetci, T. V. Tararykova, “Necessary and sufficient conditions for the boundedness of genuine singular integral operators in local Morrey-type spaces”, Eurasian Math. J., 1:1 (2010), 32–53 | MR | Zbl

[3] A. P. Calderon, “Estimates for singular integral operators in terms of maximal functions”, Studia Math., 44 (1972), 167–186 | MR

[4] A. P. Calderon, R. Scott, “Sobolev type inequalities for $p>0$”, Studia Math., 62 (1978), 75–92 | MR | Zbl

[5] S. Campanato, “Proprieta di holderianita di alcune classi di funzioni”, Ann. Scuola Norm. Sup. Pisa, 17 (1963), 175–188 | MR | Zbl

[6] R. DeVore, R. Sharpley, “Maximal functions measuring smoothness”, Mem. Amer. Math. Soc., 47:293 (1984), 1–115 | MR

[7] Ch. Fefferman, E. M. Stein, “$H^p$ spaces of several variables”, Acta Math., 129:3–4 (1972), 137–193 | DOI | MR | Zbl

[8] M. L. Gol'dman, “A criterion of imbedding for different metrics for isotropic Besov spaces with general moduli of continuity”, Proceedings of the Steklov Institute of Mathematics, 201, 1994, 155–181 | MR | Zbl

[9] B. Grevholm, “On the structure of the spaces $L^{p,\lambda}_k$”, Math. Scand., 26 (1970), 241–254 | MR | Zbl

[10] F. John, L. Nirenberg, “On functions of bounded mean oscillation”, Comm. Pure Appl. Math., 14 (1961), 415–426 | DOI | MR | Zbl

[11] V. I. Kolyada, “Estimates of maximal functions measuring local smoothness”, Analysis Mathematica, 25 (1999), 277–300 | DOI | MR | Zbl

[12] A. Korenovskii, “On local smoothness of the conjugate function”, Proc. of 4-th Saratov winter school “Theory of functions and approximations”, v. 2, 1990, 128–130 (in Russian)

[13] Y. Liang, Y. Sawano, T. Ullrich, D. Yang, W. Yuan, A new framework for generalized Besov-type and Triebel–Lizorkin-type spaces, 2012, 122 pp., arXiv: 1205.2963v.1[math.CA] | MR

[14] G. N. Meyers, “Mean oscillation over cubes and Holder continuity”, Proc. Amer. Math. Soc., 15 (1964), 717–721 | MR | Zbl

[15] E. Nakai, H. Sumitomo, “On generalized Riesz potentials and spaces of some smooth functions”, Scien. Math. Japan, 54 (2001), 463–472 | MR | Zbl

[16] J. Peetre, “On the theory of $L_{p,\lambda}$ spaces”, J. Functional Analysis, 4 (1969), 71–87 | DOI | MR | Zbl

[17] R. M. Rzaev, “On some properties of Riesz potentials in terms of the higher order mean oscillation”, Proc. Inst. Math. Mech. NAS Azerb., 4 (1996), 89–99 (in Russian)

[18] R. M. Rzaev, “On boundedness of multidimensional singular integral operator in spaces $BMO^k_{\varphi,\vartheta}$ and $H_{\varphi,\vartheta}$”, Proc. Azerb. Math. Soc., 2 (1996), 164–175 (in Russian) | MR

[19] R. M. Rzaev, “A multidimensional singular integral operator in spaces defined by conditions on the $k$-th order mean oscillation”, Dokl. Akad. Nauk (Russia), 356:5 (1997), 602–604 (in Russian) | MR | Zbl

[20] R. M. Rzaev, “Local properties of singular integrals in terms of mean oscillation”, Proc. Inst. Math. Mech. Acad. Sci. Azerb., 8 (1998), 179–185 (in Russian) | MR

[21] R. M. Rzaev, “On some maximal functions, measuring smoothness, and metric characteristics”, Trans. NAS Azerb., 19:5 (1999), 118–124 | MR

[22] R. M. Rzaev, “Inequalities for some metric characteristics”, Trans. NAS Azerb., 23:1 (2003), 173–180 | MR | Zbl

[23] R. M. Rzaev, “Properties of Riesz potential in terms of the maximal function $f^\#_{k,\varphi,p}$. Embedding theorems. Harmonic analysis”, Proc. Inst. Math. Mech. Nat. Acad. Sci. Azerb., 13 (2007), 281–294

[24] R. M. Rzaev, L. R. Aliyeva, “On local properties of functions and singular integrals in terms of the mean oscillation”, Cent. Eur. J. Math., 6:4 (2008), 595–609 | DOI | MR | Zbl

[25] V. V. Salaev, “Direct and inverse estimates for a singular Cauchy integral along a closed curve”, Math. Notes, 19:3 (1976), 221–231 | DOI | MR | Zbl

[26] D. Sarason, “Functions of vanishing mean oscillation”, Trans. Amer. Math. Soc., 207 (1975), 391–405 | DOI | MR | Zbl

[27] R. Sharpley, Y.-S. Shim, “Singular integrals on $C^\alpha_p$”, Studia. Math., 92:3 (1989), 285–293 | MR | Zbl

[28] S. Spanne, “Some function spaces defined using the mean oscillation over cubes”, Ann. Scuola Norm. Sup. Pisa, 19 (1965), 593–608 | MR | Zbl

[29] M. H. Taibleson, “On the theory of Lipschitz spaces of distributions on Euclidean $n$-space. I. Principal properties”, Indiana Univ. Math., 13:3 (1964), 407–479 | DOI | MR

[30] H. Triebel, “Local approximation spaces”, Zeitschrift für Analysis und ihre Anwendungen, 8:3 (1989), 261–288 | MR | Zbl

[31] D. C. Yang, S. B. Yang, “Elementary characterizations of generalized weighted Morrey–Campanato spaces”, Appl. Math. J. Chinese Univ., 25:2 (2010), 162–176 | DOI | MR | Zbl