Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2013_4_3_a7, author = {S. Matthes and M. Reissig}, title = {Qualitative properties of structurally damped wave models}, journal = {Eurasian mathematical journal}, pages = {84--106}, publisher = {mathdoc}, volume = {4}, number = {3}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2013_4_3_a7/} }
S. Matthes; M. Reissig. Qualitative properties of structurally damped wave models. Eurasian mathematical journal, Tome 4 (2013) no. 3, pp. 84-106. http://geodesic.mathdoc.fr/item/EMJ_2013_4_3_a7/
[1] G. Avalos, I. Lasiecka, “Optimal blowup rates for the minimal energy null control for the structurally damped abstract wave equation”, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 2 (2003), 601–616 | MR | Zbl
[2] F. Bucci, “A Dirichlet boundary control problem for the strongly damped wave equation”, SIAM J. Control Optim., 30 (1992), 1092–1100 | DOI | MR | Zbl
[3] G. Chen, D. Russel, “A mathematical model for linear elastic systems with structural damping”, Quart. J. of Appl. Math., 39 (1982), 433–454 | MR | Zbl
[4] S. P. Chen, R. Triggiani, “Proof of extensions of two conjectures on structural damping for elastic systems”, Pacific J. Math., 136 (1989), 15–55 | DOI | MR | Zbl
[5] S. P. Chen, R. Triggiani, “Characterization of domains of fractional powers of certain operators arising in elastic systems, and applications”, J. Differential Equations, 88 (1990), 279–293 | DOI | MR | Zbl
[6] I. Lasiecka, L. Pandolfi, R. Triggiani, “A singular control approach to highly damped second-order abstract equations and applications”, Appl. Math. Optim., 36 (1997), 67–107 | MR | Zbl
[7] X. Lu, M. Reissig, “Rates of decay for structural damped models with decreasing in time coefficients”, Int. J. of Dynamical Systems and Differential Equations, 2:1–2 (2009), 21–55 | MR | Zbl
[8] S. Matthes, Qualitative properties of structurally damped wave models, Master's thesis, TU Bergakademie Freiberg, 2011, 81 pp.
[9] M. Reissig, “Rates of decay for structural damped models with strictly increasing in time coefficients”, Contemporary Mathematics, 554 (2011), 187–206 | DOI | MR | Zbl
[10] Y. Shibata, “On the rate of decay of solutions to linear viscoelastic equation”, Math. Meth. Appl. Sci., 23 (2000), 203–226 | 3.0.CO;2-M class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[11] G. F. Webb, “Existence and asymptotic behaviour for a strongly damped non-linear wave equation”, Can. J. Math., 32 (1980), 631–643 | DOI | MR | Zbl
[12] J. Wirth, “Wave equations with time-dependent dissipation. I. Non-effective dissipation”, Journal of Differential Equations, 222:2 (2006), 487–514 | DOI | MR | Zbl
[13] J. Wirth, “Wave equations with time-dependent dissipation. II. Effective dissipation”, Journal of Differential Equations, 232:2 (2007), 74–103 | DOI | MR | Zbl
[14] K. Yagdjian, The Cauchy problem for hyperbolic operators. Multiple Characteristics. Micro-Local Approach, Math. Topics, 12, Akademie Verlag, Berlin, 1997 | MR | Zbl