A maximum principle in spectral optimization problems for elliptic operators subject to mass density perturbations
Eurasian mathematical journal, Tome 4 (2013) no. 3, pp. 70-83

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider eigenvalue problems for general elliptic operators of arbitrary order subject to homogeneous boundary conditions on open subsets of the Euclidean $N$-dimensional space. We prove stability results for the dependence of the eigenvalues upon variation of the mass density and we prove a maximum principle for extremum problems related to mass density perturbations which preserve the total mass.
@article{EMJ_2013_4_3_a6,
     author = {P. D. Lamberti and L. Provenzano},
     title = {A maximum principle in spectral optimization problems for elliptic operators subject to mass density perturbations},
     journal = {Eurasian mathematical journal},
     pages = {70--83},
     publisher = {mathdoc},
     volume = {4},
     number = {3},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2013_4_3_a6/}
}
TY  - JOUR
AU  - P. D. Lamberti
AU  - L. Provenzano
TI  - A maximum principle in spectral optimization problems for elliptic operators subject to mass density perturbations
JO  - Eurasian mathematical journal
PY  - 2013
SP  - 70
EP  - 83
VL  - 4
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2013_4_3_a6/
LA  - en
ID  - EMJ_2013_4_3_a6
ER  - 
%0 Journal Article
%A P. D. Lamberti
%A L. Provenzano
%T A maximum principle in spectral optimization problems for elliptic operators subject to mass density perturbations
%J Eurasian mathematical journal
%D 2013
%P 70-83
%V 4
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2013_4_3_a6/
%G en
%F EMJ_2013_4_3_a6
P. D. Lamberti; L. Provenzano. A maximum principle in spectral optimization problems for elliptic operators subject to mass density perturbations. Eurasian mathematical journal, Tome 4 (2013) no. 3, pp. 70-83. http://geodesic.mathdoc.fr/item/EMJ_2013_4_3_a6/