A maximum principle in spectral optimization problems for elliptic operators subject to mass density perturbations
Eurasian mathematical journal, Tome 4 (2013) no. 3, pp. 70-83.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider eigenvalue problems for general elliptic operators of arbitrary order subject to homogeneous boundary conditions on open subsets of the Euclidean $N$-dimensional space. We prove stability results for the dependence of the eigenvalues upon variation of the mass density and we prove a maximum principle for extremum problems related to mass density perturbations which preserve the total mass.
@article{EMJ_2013_4_3_a6,
     author = {P. D. Lamberti and L. Provenzano},
     title = {A maximum principle in spectral optimization problems for elliptic operators subject to mass density perturbations},
     journal = {Eurasian mathematical journal},
     pages = {70--83},
     publisher = {mathdoc},
     volume = {4},
     number = {3},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2013_4_3_a6/}
}
TY  - JOUR
AU  - P. D. Lamberti
AU  - L. Provenzano
TI  - A maximum principle in spectral optimization problems for elliptic operators subject to mass density perturbations
JO  - Eurasian mathematical journal
PY  - 2013
SP  - 70
EP  - 83
VL  - 4
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2013_4_3_a6/
LA  - en
ID  - EMJ_2013_4_3_a6
ER  - 
%0 Journal Article
%A P. D. Lamberti
%A L. Provenzano
%T A maximum principle in spectral optimization problems for elliptic operators subject to mass density perturbations
%J Eurasian mathematical journal
%D 2013
%P 70-83
%V 4
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2013_4_3_a6/
%G en
%F EMJ_2013_4_3_a6
P. D. Lamberti; L. Provenzano. A maximum principle in spectral optimization problems for elliptic operators subject to mass density perturbations. Eurasian mathematical journal, Tome 4 (2013) no. 3, pp. 70-83. http://geodesic.mathdoc.fr/item/EMJ_2013_4_3_a6/

[1] S. Agmon, Lectures on elliptic boundary value problems, Jr. Van Nostrand Mathematical Studies, 2, D. Van Nostrand Co., Inc., Princeton, N.J.–Toronto–London, 1965 | MR | Zbl

[2] G. Auchmuty, “Dual variational principles for eigenvalue problems”, Nonlinear functional analysis and its applications, Part 1 (Berkeley, Calif., 1983), Proc. Sympos. Pure Math., 45, Part 1, Amer. Math. Soc., Providence, RI, 1986, 55–71 | DOI | MR

[3] D. O. Banks, “Bounds for the eigenvalues of some vibrating systems”, Pacific J. Math., 10 (1960), 439–474 | DOI | MR | Zbl

[4] D. O. Banks, “Bounds for the eigenvalues of nonhomogeneous hinged vibrating rods”, J. Math. Mech., 16 (1967), 949–966 | MR | Zbl

[5] D. Buoso, P. D. Lamberti, “Eigenvalues of polyharmonic operators on variable domains”, ESAIM Control Optim. Calc. Var., 19 (2013), 1225–1235 | DOI | Zbl

[6] D. Buoso, P. D. Lamberti, “Shape deformation for vibrating hinged plates”, Mathematical Methods in the Applied Sciences (to appear)

[7] V. Burenkov, Sobolev spaces on domains, Teubner-Texte zur Mathematik, 137, B. G. Teubner Verlgesellschaft mbH, Stuttgart–Leipzig, 1998 | DOI | MR | Zbl

[8] S. Chanillo, D. Grieser, M. Imai, K. Kurata, I. Ohnishi, “Symmetry breaking and other phenomena in the optimization of eigenvalues for composite membranes”, Comm. Math. Phys., 214:2 (2000), 315–337 | DOI | MR | Zbl

[9] L. M. Chasman, “An isoperimetric inequality for fundamental tones of free plates”, Comm. Math. Phys., 303:2 (2011), 421–449 | DOI | MR | Zbl

[10] R. Courant, D. Hilbert, Methods of mathematical physics, v. I, Interscience, New York, 1953 | MR | Zbl

[11] S. J. Cox, “Extremal eigenvalue problems for the Laplacian”, Recent advances in partial differential equations (El Escorial, 1992), RAM Res. Appl. Math., 30, Masson, Paris, 1994, 37–53 | MR

[12] S. J. Cox, J. R. McLaughlin, “Extremal eigenvalue problems for composite membranes, I”, Appl. Math. Optim., 22:2 (1990), 153–167 | DOI | MR | Zbl

[13] S. J. Cox, J. R. McLaughlin, “Extremal eigenvalue problems for composite membranes, II”, Appl. Math. Optim., 22:2 (1990), 169–187 | DOI | MR | Zbl

[14] K. Deimling, Nonlinear functional analysis, Springer-Verlag, Berlin, 1985 | MR | Zbl

[15] S. Friedland, “Extremal eigenvalue problems defined for certain classes of functions”, Arch. Rat. Mech. Anal., 67:1 (1977), 73–81 | DOI | MR | Zbl

[16] S. Friedland, “Extremal eigenvalue problems”, Bol. Soc. Brasil. Mat., 9:1 (1978), 13–40 | DOI | MR | Zbl

[17] F. Gazzola, H. C. Grunau, G. Sweers, Polyharmonic boundary value problems. Positivity preserving and nonlinear higher order elliptic equations in bounded domains, Lecture Notes in Mathematics, 1991, Springer-Verlag, Berlin, 2010 | DOI | MR | Zbl

[18] A. Henrot, Extremum problems for eigenvalues of elliptic operators, Frontiers in Mathematics, Birkhäuser Verlag, Basel, 2006 | MR | Zbl

[19] M. G. Krein, “On certain problems on the maximum and minumum of the characteristic values and on the Lyapunov zones of stability”, AMS Translations Ser. (2), 1 (1955), 163–187 | MR

[20] P. D. Lamberti, M. Lanza de Cristoforis, “A real analyticity result for symmetric functions of the eigenvalues of a domain dependent Dirichlet problem for the Laplace operator”, J. Nonlinear Convex Anal., 5:1 (2004), 19–42 | MR | Zbl

[21] P. D. Lamberti, M. Lanza de Cristoforis, “Critical points of the symmetric functions of the eigenvalues of the Laplace operator and overdetermined problems”, J. Math. Soc. Japan, 58:1 (2006), 231–245 | DOI | MR | Zbl

[22] P. D. Lamberti, “Absence of critical mass densities for a vibrating membrane”, Appl. Math. Optim., 59:3 (2009), 319–327 | DOI | MR | Zbl

[23] P. D. Lamberti, “Steklov-type eigenvalues associated with best Sobolev trace constants: domain perturbation and overdetermined systems”, Complex variables elliptic equations (to appear)

[24] J. Necǎs, Les méthodes directes en théorie des équations elliptiques, Masson et Cie, Éditeurs, Paris, 1967 | MR | Zbl

[25] B. Schwarz, “Some results on the frequencies of nonhomogeneous rods”, J. Math. Anal. Appl., 5 (1962), 169–175 | DOI | MR | Zbl