Addition of lower order terms preserving almost hypoellipticity of polynomials
Eurasian mathematical journal, Tome 4 (2013) no. 3, pp. 32-52

Voir la notice de l'article provenant de la source Math-Net.Ru

A linear differential operator $P(D)$ with constant coefficients is called almost hypoelliptic if all derivatives $P^{(\nu)}(\xi)$ of the characteristic polynomial $P(\xi)$ can be estimated above via $P(\xi)$. In this paper we describe the collection of lower order terms addition of which to an almost hypoelliptic operator $P(D)$ (polynomial $P(\xi)$) preserves its almost hypoellipticity and its strength.
@article{EMJ_2013_4_3_a3,
     author = {H. G. Ghazaryan},
     title = {Addition of lower order terms preserving almost hypoellipticity of polynomials},
     journal = {Eurasian mathematical journal},
     pages = {32--52},
     publisher = {mathdoc},
     volume = {4},
     number = {3},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2013_4_3_a3/}
}
TY  - JOUR
AU  - H. G. Ghazaryan
TI  - Addition of lower order terms preserving almost hypoellipticity of polynomials
JO  - Eurasian mathematical journal
PY  - 2013
SP  - 32
EP  - 52
VL  - 4
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2013_4_3_a3/
LA  - en
ID  - EMJ_2013_4_3_a3
ER  - 
%0 Journal Article
%A H. G. Ghazaryan
%T Addition of lower order terms preserving almost hypoellipticity of polynomials
%J Eurasian mathematical journal
%D 2013
%P 32-52
%V 4
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2013_4_3_a3/
%G en
%F EMJ_2013_4_3_a3
H. G. Ghazaryan. Addition of lower order terms preserving almost hypoellipticity of polynomials. Eurasian mathematical journal, Tome 4 (2013) no. 3, pp. 32-52. http://geodesic.mathdoc.fr/item/EMJ_2013_4_3_a3/