Addition of lower order terms preserving almost hypoellipticity of polynomials
Eurasian mathematical journal, Tome 4 (2013) no. 3, pp. 32-52.

Voir la notice de l'article provenant de la source Math-Net.Ru

A linear differential operator $P(D)$ with constant coefficients is called almost hypoelliptic if all derivatives $P^{(\nu)}(\xi)$ of the characteristic polynomial $P(\xi)$ can be estimated above via $P(\xi)$. In this paper we describe the collection of lower order terms addition of which to an almost hypoelliptic operator $P(D)$ (polynomial $P(\xi)$) preserves its almost hypoellipticity and its strength.
@article{EMJ_2013_4_3_a3,
     author = {H. G. Ghazaryan},
     title = {Addition of lower order terms preserving almost hypoellipticity of polynomials},
     journal = {Eurasian mathematical journal},
     pages = {32--52},
     publisher = {mathdoc},
     volume = {4},
     number = {3},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2013_4_3_a3/}
}
TY  - JOUR
AU  - H. G. Ghazaryan
TI  - Addition of lower order terms preserving almost hypoellipticity of polynomials
JO  - Eurasian mathematical journal
PY  - 2013
SP  - 32
EP  - 52
VL  - 4
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2013_4_3_a3/
LA  - en
ID  - EMJ_2013_4_3_a3
ER  - 
%0 Journal Article
%A H. G. Ghazaryan
%T Addition of lower order terms preserving almost hypoellipticity of polynomials
%J Eurasian mathematical journal
%D 2013
%P 32-52
%V 4
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2013_4_3_a3/
%G en
%F EMJ_2013_4_3_a3
H. G. Ghazaryan. Addition of lower order terms preserving almost hypoellipticity of polynomials. Eurasian mathematical journal, Tome 4 (2013) no. 3, pp. 32-52. http://geodesic.mathdoc.fr/item/EMJ_2013_4_3_a3/

[1] Akademie-Verlag, Berlin, 1955 | MR | Zbl

[2] V. I. Burenkov, Investigation of spaces of differentiable functions defined on irregular domains, Doctor of Sciences thesis, Steklov Inst. Math., 1982, 312 pp.

[3] V. I. Burenkov, “An analogue of Hörmander's theorem on hypoellipticity for functions converging to 0 at infinity”, Proc. 7th Soviet-Czechoslovak Seminar, Yerevan, 1982, 63–67 (in Russian)

[4] V. I. Burenkov, “Conditional hypoellipticity and Fourier multipliers in weighted $L_p$-spaces with an exponential weight”, Proc. of Summer School “Function spaces, differential operators, nonlinear analysis”, held in Fridrichroda in 1993, Teubner-Texte zur Mathematik, 133, B. G. Teubner, Stuttgart–Leipzig, 1993, 256–265 | DOI | MR

[5] Proc. Steklov Inst. Math., 89, 1967 | MR | Zbl

[6] J. Friberg, “Multi-quasi-elliptic polynomials”, Ann. Scuola Norm. Sup. Pisa. Ser 3, 21 (1967), 239–260 | MR | Zbl

[7] “Linear hyperbolic partial differential equations with constant coefficients”, Acta Math., 85 (1951), 1–62 | DOI | MR | Zbl

[8] L. Gȧrding, B. Malgrange, “Operateurs differentiels partiellement hypoelliptiques”, Math. Scand., 9 (1961), 5–21 | MR

[9] Journal of Contemporary Mathematical Analysis (Armenian Academy of Sciences), 39:3 (2004), 10–28 | MR

[10] H. G. Ghazaryan, V. N. Margaryan, “Behaviour at infinity of polynomials in two variables”, Topics in Analysis and its Applications, NATO Sci. Series, 147, Kluwer Acad. Publ., Dortrecht–Boston–London, 2004, 163–190 | MR | Zbl

[11] Journal of Contemporary Mathematical Analysis (Armenian Academy of Sciences), 41:6 (2006), 30–46 | MR

[12] H. G. Ghazaryan, V. N. Margaryan, “On infinite differentiability of solutions of nonhomogeneous almost hypoelliptic equations”, Eurasian Math. J., 1:1 (2010), 54–72 | MR | Zbl

[13] H. G. Ghazaryan, “On selection of infinitely differentiable solutions of a class of partially hypoelliptic equations”, Eurasian Math. J., 3:1 (2012), 41–62 | MR | Zbl

[14] S. Gindikin, L. R. Volevich, The method of Newton's holyhedron in the theory of partial differential equations, Math. and its Appl. Sov. Ser., 86, Kluwer Academic Publishers, Doftrecht–Boston–London, 1992 | MR | Zbl

[15] Math USSR Sb., 12:3 (1970), 458–476 | DOI | MR | Zbl

[16] L. Hörmander, The analysis of linear partial differential operators, v. 2, Springer-Verlag, 1983 | Zbl

[17] Journal of Contemporary Mathematical Analysis (Armenian Academy of Sciences), 34:3 (1999), 44–63 | MR | Zbl

[18] G. G. Kazaryan, “On a family of hypoelliptic polynomials”, Izv. Akad. Nauk Arm. SSR, ser. Mat., 9 (1974), 189–211 (in Russian) | MR | Zbl

[19] G. G. Kazaryan, “On almost hypoelliptic polynomials”, Doklady Ross. Acad. Nauk, 398:6 (2004), 701–703 | MR

[20] G. G. Kazaryan, “On almost hypoelliptic polynomials increasing at infinity”, Journal of Contemporary Math. Analysis, 46:6 (2011), 181–194 | MR

[21] Proc. Steklov Inst. Math., 91, 1967, 61–82 | MR | Zbl

[22] Soviet Math Dokl., 3 (1962) | MR

[23] I. G. Petrovskii, “On a Cauchy problem for a system of linear differential equations in a domain of nonanalytic functions”, Bull. Mosk. Univ. (A), 1:7 (1938), 1–72 (in Russian)

[24] Russian Math. Surveys, 29:2 (1974), 263–292 | DOI | MR | Zbl | Zbl