Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2013_4_3_a2, author = {N. P. Bondarenko}, title = {An inverse problem for the matrix quadratic pencil on a finite interval}, journal = {Eurasian mathematical journal}, pages = {20--31}, publisher = {mathdoc}, volume = {4}, number = {3}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2013_4_3_a2/} }
N. P. Bondarenko. An inverse problem for the matrix quadratic pencil on a finite interval. Eurasian mathematical journal, Tome 4 (2013) no. 3, pp. 20-31. http://geodesic.mathdoc.fr/item/EMJ_2013_4_3_a2/
[1] A. M. Akhtyamov, V. A. Sadovnichy, Ya. T. Sultanaev, “Inverse problem for an operator pencil with nonseparated boundary conditions”, Eurasian Math. J., 1:2 (2010), 5–16 | MR | Zbl
[2] A. M. Akhtyamov, V. A. Sadovnichy, Ya. T. Sultanaev, “Generalizations of Borg's uniqueness theorem to the case of nonseparated boundary conditions”, Eurasian Math. J., 3:4 (2012), 10–22 | MR | Zbl
[3] N. Bondarenko, “Spectral analysis for the matrix Sturm–Liouville operator on a finite interval”, Tamkang J. Math., 42:3 (2011), 305–327 | DOI | MR | Zbl
[4] N. P. Bondarenko, “Necessary and sufficient conditions for the solvability of the inverse problem for the matrix Sturm–Liouville operator”, Funct. Anal. Appl., 46:1 (2012), 53–57 | DOI | MR | Zbl
[5] S. A. Buterin, “On half inverse problem for differential pencils with the spectral parameter in boundary conditions”, Tamkang J. Math., 42:3 (2011), 355–364 | DOI | MR | Zbl
[6] S. A. Buterin, V. A. Yurko, “Inverse spectral problem for pencils of differential operators on a finite interval”, Vestnik Bashkir. Univ., 2006, no. 4, 8–12 (in Russian)
[7] S. A. Buterin, V. A. Yurko, “Inverse problems for second-order differential pencils with Dirichlet boundary conditions”, J. Inverse Ill-Posed Probl., 20:5–6 (2012), 855–881 | MR | Zbl
[8] D. Chelkak, E. Korotyaev, “Weyl-Titchmarsh functions of vector-valued Sturm–Liouville operators on the unit interval”, J. Func. Anal., 257 (2009), 1546–1588 | DOI | MR | Zbl
[9] G. Freiling, V. Yurko, Inverse Sturm–Liouville problems and their applications, Nova Science Publishers, Huntington, NY, 2001, 305 pp. | MR | Zbl
[10] M. G. Gasymov, G. Sh. Gusejnov, “Determination of diffusion operator from spectral data”, Akad. Nauk Azerb. SSR. Dokl., 37 (1981), 19–23 | MR | Zbl
[11] R. Hryniv, N. Pronska, “Inverse spectral problems for energy-dependent Sturm–Liouville equations”, Inverse Problems, 28 (2012), 085008, 21 pp. | DOI | MR | Zbl
[12] M. Yu. Ignatiev, V. A. Yurko, “Numerical methods for solving inverse Sturm–Liouville problems”, Results in Mathematics, 52:1–2 (2008), 63–74 | DOI | MR | Zbl
[13] M. Jaulent, C. Jean, “The inverse $s$-wave scattering problem for a class of potentials depending on energy”, Comm. Math. Phys., 28 (1972), 177–220 | DOI | MR
[14] M. V. Keldysh, “On eigenvalues and eigenfunctions of some classes of nonselfadjoint equations”, Dokl. Akad. Nauk. SSSR, 77 (1951), 11–14 | Zbl
[15] M. V. Keldysh, “On the completeness of the eigenfunctions of some classes of nonselfadjoint linear operators”, Russian Math. Surveys, 26:4 (1971), 15–44 | DOI | MR | Zbl
[16] Funct. Anal. Appl., 17 (1983), 109–128 | DOI | MR | Zbl
[17] Birkhauser, 1986 | MR | Zbl
[18] “Shtiints”, Kishinev, 1986 | MR | Zbl | Zbl
[19] Ya. V. Mykytyuk, N. S. Trush, “Inverse spectral problems for Sturm-Liouville operators with matrix-valued potentials”, Inverse Problems, 26 (2010), 015009 | DOI | MR | Zbl
[20] N. Pronska, “Reconstruction of energy-dependent Sturm–Liouville equations from two spectra”, Integral Equations and Operator Theory, 76:3 (2013), 403–419 | DOI | MR | Zbl
[21] A. A. Shkalikov, “Boundary value problems for ordinary differential equations with a parameter in the boundary conditions”, Trudy Sem. Petrovsk., 9, 1983, 190–229 (in Russian) | MR | Zbl
[22] M. Yamamoto, “Inverse eigenvalue problem for a vibration of a string with viscous drag”, J. Math. Anal. Appl., 152 (1990), 20–34 | DOI | MR | Zbl
[23] V. A. Yurko, “On boundary value problems with the parameter in the boundary conditions”, Izvestjya AN SSR. Ser. Matem., 19 (1984), 398–409 | MR | Zbl
[24] Diff. Equ., 33:3 (1997), 388–394 | MR | Zbl
[25] V. A. Yurko, “An inverse problem for pencils of differential operators”, Matem. Sbornik, 191:10 (2000), 137–160 | DOI | MR | Zbl
[26] V. A. Yurko, Method of spectral mappings in the inverse problems theory, Inverse and Ill-posed Problems Series, VSP, Utrecht, 2002 | MR | Zbl
[27] V. A. Yurko, “Inverse problems for the matrix Sturm–Liouville equation on a finite interval”, Inverse Problems, 22 (2006), 1139–1149 | DOI | MR | Zbl