An inverse problem for the matrix quadratic pencil on a finite interval
Eurasian mathematical journal, Tome 4 (2013) no. 3, pp. 20-31
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider a quadratic matrix boundary value problem with equations and boundary conditions dependent on a spectral parameter. We study an inverse problem that consists in recovering the differential pencil by the so-called Weyl matrix. We obtain asymptotic formulas for the solutions of the considered matrix equation. Using the ideas of the method of spectral mappings, we prove the uniqueness theorem for this inverse problem.
@article{EMJ_2013_4_3_a2,
author = {N. P. Bondarenko},
title = {An inverse problem for the matrix quadratic pencil on a finite interval},
journal = {Eurasian mathematical journal},
pages = {20--31},
publisher = {mathdoc},
volume = {4},
number = {3},
year = {2013},
language = {en},
url = {http://geodesic.mathdoc.fr/item/EMJ_2013_4_3_a2/}
}
N. P. Bondarenko. An inverse problem for the matrix quadratic pencil on a finite interval. Eurasian mathematical journal, Tome 4 (2013) no. 3, pp. 20-31. http://geodesic.mathdoc.fr/item/EMJ_2013_4_3_a2/