Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2013_4_3_a1, author = {C. Aykol and V. S. Guliyev and A. Serbetci}, title = {The {O'Neil} inequality for the {Hankel} convolution operator and some applications}, journal = {Eurasian mathematical journal}, pages = {8--19}, publisher = {mathdoc}, volume = {4}, number = {3}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2013_4_3_a1/} }
TY - JOUR AU - C. Aykol AU - V. S. Guliyev AU - A. Serbetci TI - The O'Neil inequality for the Hankel convolution operator and some applications JO - Eurasian mathematical journal PY - 2013 SP - 8 EP - 19 VL - 4 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/EMJ_2013_4_3_a1/ LA - en ID - EMJ_2013_4_3_a1 ER -
C. Aykol; V. S. Guliyev; A. Serbetci. The O'Neil inequality for the Hankel convolution operator and some applications. Eurasian mathematical journal, Tome 4 (2013) no. 3, pp. 8-19. http://geodesic.mathdoc.fr/item/EMJ_2013_4_3_a1/
[1] D. Adams, “A sharp inequality of J. Moser for high order derivatives”, Ann. of Math., 128 (1988), 385–398 | DOI | MR | Zbl
[2] J. J. Betancor, J. C. Farina, L. Rodriguez-Mesa, A. Sanabria-Garcia, “Transferring boundedness from conjugate operators associated with Jacobi, Laguerre, and Fourier–Bessel expansions to conjugate operators in the Hankel setting”, J. Fourier Anal. Appl., 14 (2008), 493–513 | DOI | MR | Zbl
[3] J. J. Betancor, L. Rodriguez-Mesa, “Lipschitz–Hankel Spaces, partial Hankel integrals and Bochner–Riesz means”, Arch. Math., 71 (1998), 115–122 | DOI | MR | Zbl
[4] V. S. Guliyev, A. Serbetci, I. Ekincioglu, “Necessary and sufficient conditions for the boundedness of rough $B$-fractional integral operators in the Lorentz spaces”, J. Math. Anal. Appl., 336 (2007), 425–437 | DOI | MR | Zbl
[5] V. S. Guliyev, N. N. Garakhanova, Y. Zeren, “Pointwise and Integral Estimates for the $B$-Riesz Potential in Terms of $B$-maximal and $B$-fractional Maximal Functions”, Siberian Math. J., 49:6 (2008), 1008–1022 | DOI | MR
[6] C. S. Herz, “On the mean inversion of Fourier and Hankel transforms”, Proc. Nat. Acad. Sci. USA, 40 (1954), 996–999 | DOI | MR | Zbl
[7] V. G. Maz'ya, Sobolev Spaces, Springer-Verlag, Berlin, 1985 | MR | Zbl
[8] E. Nursultanov, S. Tikhonov, “Convolution Inequalities in Lorentz Spaces”, J. Fourier Anal. Appl., 17 (2011), 486–505 | DOI | MR | Zbl
[9] R. O'Neil, “Convolution operators and $L(p,q)$ spaces”, Duke Math. J., 30 (1963), 129–142 | DOI | MR | Zbl
[10] K. Stempak, “Almost everywhere summability of Laguerre series”, Studia Math., 100 (1991), 129–147 | MR | Zbl
[11] K. Trimeche, “Transformation integrale de Weyl et theoreme de Paley–Wiener associes a un operateur differentiel sur $(0,\infty)$”, J. Math. Pures Appl., 60 (1981), 51–98 | MR | Zbl
[12] W. P. Ziemer, Weakly Differentiable Functions, Springer Verlag, New York, 1989 | MR | Zbl