The O'Neil inequality for the Hankel convolution operator and some applications
Eurasian mathematical journal, Tome 4 (2013) no. 3, pp. 8-19

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we prove the O'Neil inequality for the Hankel (Fourier–Bessel) convolution operator and consider some of its applications. By using the O'Neil inequality we study the boundedness of the Riesz–Hankel potential operator $I_{\beta,\alpha}$, associated with the Hankel transform in the Lorentz–Hankel spaces $L_{p,r,\alpha}(0,\infty)$. We establish necessary and sufficient conditions for the boundedness of $I_{\beta,\alpha}$, from the Lorentz–Hankel spaces $L_{p,r,\alpha}(0,\infty)$ to $L_{q,s,\alpha}(0,\infty)$, $1$, $\le r\le s\le\infty$. We obtain boundedness conditions in the limiting cases $p=1$ and $p=(2\alpha+2)/\beta$. Finally, for the limiting case $p=(2\alpha+2)/\beta$ we prove an analogue of the Adams theorem on exponential integrability of $I_{\beta,\alpha}$, in $L_{(2\alpha+2)/\beta,r,\alpha}(0,\infty)$.
@article{EMJ_2013_4_3_a1,
     author = {C. Aykol and V. S. Guliyev and A. Serbetci},
     title = {The {O'Neil} inequality for the {Hankel} convolution operator and some applications},
     journal = {Eurasian mathematical journal},
     pages = {8--19},
     publisher = {mathdoc},
     volume = {4},
     number = {3},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2013_4_3_a1/}
}
TY  - JOUR
AU  - C. Aykol
AU  - V. S. Guliyev
AU  - A. Serbetci
TI  - The O'Neil inequality for the Hankel convolution operator and some applications
JO  - Eurasian mathematical journal
PY  - 2013
SP  - 8
EP  - 19
VL  - 4
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2013_4_3_a1/
LA  - en
ID  - EMJ_2013_4_3_a1
ER  - 
%0 Journal Article
%A C. Aykol
%A V. S. Guliyev
%A A. Serbetci
%T The O'Neil inequality for the Hankel convolution operator and some applications
%J Eurasian mathematical journal
%D 2013
%P 8-19
%V 4
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2013_4_3_a1/
%G en
%F EMJ_2013_4_3_a1
C. Aykol; V. S. Guliyev; A. Serbetci. The O'Neil inequality for the Hankel convolution operator and some applications. Eurasian mathematical journal, Tome 4 (2013) no. 3, pp. 8-19. http://geodesic.mathdoc.fr/item/EMJ_2013_4_3_a1/