The O'Neil inequality for the Hankel convolution operator and some applications
Eurasian mathematical journal, Tome 4 (2013) no. 3, pp. 8-19.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we prove the O'Neil inequality for the Hankel (Fourier–Bessel) convolution operator and consider some of its applications. By using the O'Neil inequality we study the boundedness of the Riesz–Hankel potential operator $I_{\beta,\alpha}$, associated with the Hankel transform in the Lorentz–Hankel spaces $L_{p,r,\alpha}(0,\infty)$. We establish necessary and sufficient conditions for the boundedness of $I_{\beta,\alpha}$, from the Lorentz–Hankel spaces $L_{p,r,\alpha}(0,\infty)$ to $L_{q,s,\alpha}(0,\infty)$, $1$, $\le r\le s\le\infty$. We obtain boundedness conditions in the limiting cases $p=1$ and $p=(2\alpha+2)/\beta$. Finally, for the limiting case $p=(2\alpha+2)/\beta$ we prove an analogue of the Adams theorem on exponential integrability of $I_{\beta,\alpha}$, in $L_{(2\alpha+2)/\beta,r,\alpha}(0,\infty)$.
@article{EMJ_2013_4_3_a1,
     author = {C. Aykol and V. S. Guliyev and A. Serbetci},
     title = {The {O'Neil} inequality for the {Hankel} convolution operator and some applications},
     journal = {Eurasian mathematical journal},
     pages = {8--19},
     publisher = {mathdoc},
     volume = {4},
     number = {3},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2013_4_3_a1/}
}
TY  - JOUR
AU  - C. Aykol
AU  - V. S. Guliyev
AU  - A. Serbetci
TI  - The O'Neil inequality for the Hankel convolution operator and some applications
JO  - Eurasian mathematical journal
PY  - 2013
SP  - 8
EP  - 19
VL  - 4
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2013_4_3_a1/
LA  - en
ID  - EMJ_2013_4_3_a1
ER  - 
%0 Journal Article
%A C. Aykol
%A V. S. Guliyev
%A A. Serbetci
%T The O'Neil inequality for the Hankel convolution operator and some applications
%J Eurasian mathematical journal
%D 2013
%P 8-19
%V 4
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2013_4_3_a1/
%G en
%F EMJ_2013_4_3_a1
C. Aykol; V. S. Guliyev; A. Serbetci. The O'Neil inequality for the Hankel convolution operator and some applications. Eurasian mathematical journal, Tome 4 (2013) no. 3, pp. 8-19. http://geodesic.mathdoc.fr/item/EMJ_2013_4_3_a1/

[1] D. Adams, “A sharp inequality of J. Moser for high order derivatives”, Ann. of Math., 128 (1988), 385–398 | DOI | MR | Zbl

[2] J. J. Betancor, J. C. Farina, L. Rodriguez-Mesa, A. Sanabria-Garcia, “Transferring boundedness from conjugate operators associated with Jacobi, Laguerre, and Fourier–Bessel expansions to conjugate operators in the Hankel setting”, J. Fourier Anal. Appl., 14 (2008), 493–513 | DOI | MR | Zbl

[3] J. J. Betancor, L. Rodriguez-Mesa, “Lipschitz–Hankel Spaces, partial Hankel integrals and Bochner–Riesz means”, Arch. Math., 71 (1998), 115–122 | DOI | MR | Zbl

[4] V. S. Guliyev, A. Serbetci, I. Ekincioglu, “Necessary and sufficient conditions for the boundedness of rough $B$-fractional integral operators in the Lorentz spaces”, J. Math. Anal. Appl., 336 (2007), 425–437 | DOI | MR | Zbl

[5] V. S. Guliyev, N. N. Garakhanova, Y. Zeren, “Pointwise and Integral Estimates for the $B$-Riesz Potential in Terms of $B$-maximal and $B$-fractional Maximal Functions”, Siberian Math. J., 49:6 (2008), 1008–1022 | DOI | MR

[6] C. S. Herz, “On the mean inversion of Fourier and Hankel transforms”, Proc. Nat. Acad. Sci. USA, 40 (1954), 996–999 | DOI | MR | Zbl

[7] V. G. Maz'ya, Sobolev Spaces, Springer-Verlag, Berlin, 1985 | MR | Zbl

[8] E. Nursultanov, S. Tikhonov, “Convolution Inequalities in Lorentz Spaces”, J. Fourier Anal. Appl., 17 (2011), 486–505 | DOI | MR | Zbl

[9] R. O'Neil, “Convolution operators and $L(p,q)$ spaces”, Duke Math. J., 30 (1963), 129–142 | DOI | MR | Zbl

[10] K. Stempak, “Almost everywhere summability of Laguerre series”, Studia Math., 100 (1991), 129–147 | MR | Zbl

[11] K. Trimeche, “Transformation integrale de Weyl et theoreme de Paley–Wiener associes a un operateur differentiel sur $(0,\infty)$”, J. Math. Pures Appl., 60 (1981), 51–98 | MR | Zbl

[12] W. P. Ziemer, Weakly Differentiable Functions, Springer Verlag, New York, 1989 | MR | Zbl