Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2013_4_2_a6, author = {Da. Yang and Do. Yang and X. Fu}, title = {The {Hardy} space $H^1$ on non-homogeneous spaces and its applications~-- a~survey}, journal = {Eurasian mathematical journal}, pages = {104--139}, publisher = {mathdoc}, volume = {4}, number = {2}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2013_4_2_a6/} }
TY - JOUR AU - Da. Yang AU - Do. Yang AU - X. Fu TI - The Hardy space $H^1$ on non-homogeneous spaces and its applications~-- a~survey JO - Eurasian mathematical journal PY - 2013 SP - 104 EP - 139 VL - 4 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/EMJ_2013_4_2_a6/ LA - en ID - EMJ_2013_4_2_a6 ER -
Da. Yang; Do. Yang; X. Fu. The Hardy space $H^1$ on non-homogeneous spaces and its applications~-- a~survey. Eurasian mathematical journal, Tome 4 (2013) no. 2, pp. 104-139. http://geodesic.mathdoc.fr/item/EMJ_2013_4_2_a6/
[1] T. A. Bui, X. T. Duong, “Hardy spaces, regularized BMO spaces and the boundedness of Calderón–Zygmund operators on non-homogeneous spaces”, J. Geom. Anal., 23 (2013), 895–932 | DOI | MR | Zbl
[2] R. R. Coifman, “A real variable characterization of $H^p$”, Studia Math., 51 (1974), 269–274 | MR | Zbl
[3] R. R. Coifman, “Characterization of Fourier transforms of Hardy spaces”, Proc. Nat. Acad. Sci. U.S.A., 71 (1974), 4133–4134 | DOI | MR | Zbl
[4] R. R. Coifman, G. Weiss, Analyse Harmonique Non-Commutative sur Certains Espaces Homogènes, Lecture Notes in Math., 242, Springer-Verlag, Berlin–New York, 1971 | MR | Zbl
[5] R. R. Coifman, G. Weiss, “Extensions of Hardy spaces and their use in analysis”, Bull. Amer. Math. Soc., 83 (1977), 569–645 | DOI | MR | Zbl
[6] D. Deng, Y. Han, Harmonic Analysis on Spaces of Homogeneous Type, Lecture Notes in Math., 1966, Springer-Verlag, Berlin, 2009 | MR | Zbl
[7] C. Fefferman, E. M. Stein, “$H^p$ spaces of several variables”, Acta Math., 129 (1972), 137–193 | DOI | MR | Zbl
[8] X. Fu, D. Yang, W. Yuan, “Boundedness on Orlicz spaces for multilinear commutators of Calderón–Zygmund operators on non-homogeneous spaces”, Taiwanese J. Math., 16 (2012), 2203–2238 | MR | Zbl
[9] X. Fu, D. Yang, W. Yuan, Generalized fractional integrals and their commutators over nonhomogeneous spaces, Submitted
[10] X. Fu, Da. Yang, Do. Yang, The molecular characterization of the Hardy space $H^1$ on nonhomogeneous spaces and its application, Submitted
[11] Y. Han, D. Müller, D. Yang, “A theory of Besov and Triebel–Lizorkin spaces on metric measure spaces modeled on Carnot–Carathéodory spaces”, Abstr. Appl. Anal., 2008 (2008), Art. ID 893409, 250 pp. | DOI | MR
[12] G. Hu, H. Lin, D. Yang, “Marcinkiewicz integrals with non-doubling measures”, Integral Equations Operator Theory, 58 (2007), 205–238 | DOI | MR | Zbl
[13] G. Hu, Y. Meng, “Calderón–Zygmund operators with non-doubling measures”, Adv. Math. (China) (to appear)
[14] G. Hu, Y. Meng, D. Yang, “New atomic characterization of $H^1$ space with non-doubling measures and its applications”, Math. Proc. Cambridge Philos. Soc., 138 (2005), 151–171 | DOI | MR | Zbl
[15] G. Hu, Y. Meng, D. Yang, “A new characterization of regularized BMO spaces on nonhomogeneous spaces and its applications”, Ann. Acad. Sci. Fenn. Math., 38 (2013), 3–27 | DOI | Zbl
[16] G. Hu, Y. Meng, D. Yang, “Weighted norm inequalities for multilinear Calderón–Zygmund operators on non-homogeneous metric measure spaces”, Forum Math., 2012 | DOI
[17] T. Hytönen, “A framework for non-homogeneous analysis on metric spaces, and the RBMO space of Tolsa”, Publ. Mat., 54 (2010), 485–504 | DOI | MR | Zbl
[18] T. Hytönen, S. Liu, Da. Yang, Do. Yang, “Boundedness of Calderón–Zygmund operators on nonhomogeneous metric measure spaces”, Canad. J. Math., 64 (2012), 892–923 | DOI | MR | Zbl
[19] T. Hytönen, H. Martikainen, “Non-homogeneous $Tb$ theorem and random dyadic cubes on metric measure spaces”, J. Geom. Anal., 22 (2012), 1071–1107 | DOI | MR | Zbl
[20] T. Hytönen, Da. Yang, Do. Yang, “The Hardy space $H^1$ on non-homogeneous metric spaces”, Math. Proc. Cambridge Philos. Soc., 153 (2012), 9–31 | DOI | MR | Zbl
[21] R. H. Latter, “A characterization of $H^p(\mathbb R^n)$ in terms of atoms”, Studia Math., 62 (1978), 93–101 | MR | Zbl
[22] H. Lin, D. Yang, “Spaces of type BLO on non-homogeneous metric measure spaces”, Front. Math. China, 6 (2011), 271–292 | DOI | MR | Zbl
[23] H. Lin, D. Yang, “An interpolation theorem for sublinear operators on non-homogeneous metric measure spaces”, Banach J. Math. Anal., 6 (2012), 168–179 | DOI | MR | Zbl
[24] H. Lin, D. Yang, “Equivalent boundedness of Marcinkiewicz integrals on non-homogeneous metric measure spaces”, Sci. China Math. (to appear)
[25] L. Liu, Da. Yang, Do. Yang, “Atomic Hardy-type spaces between $H^1$ and $L^1$ on metric spaces with non-doubling measures”, Acta Math. Sin. (Engl. Ser.), 27 (2011), 2445–2468 | DOI | MR | Zbl
[26] S. Liu, Y. Meng, D. Yang, “Boundedness of maximal Calderón–Zygmund operators on nonhomogeneous metric measure spaces”, Proc. Roy. Soc. Edinburgh Sect. A (to appear)
[27] S. Liu, Da. Yang, Do. Yang, “Boundedness of Calderón–Zygmund operators on non-homogeneous metric measure spaces: Equivalent characterizations”, J. Math. Anal. Appl., 386 (2012), 258–272 | DOI | MR | Zbl
[28] F. Nazarov, S. Treil, A. Volberg, “Cauchy integral and Calderón–Zygmund operators on nonhomogeneous spaces”, Internat. Math. Res. Notices, 15 (1997), 703–726 | DOI | MR | Zbl
[29] F. Nazarov, S. Treil, A. Volberg, “Weak type estimates and Cotlar inequalities for Calderón–Zygmund operators on nonhomogeneous spaces”, Internat. Math. Res. Notices, 9 (1998), 463–487 | DOI | MR | Zbl
[30] F. Nazarov, S. Treil, A. Volberg, “Accretive system $Tb$-theorems on nonhomogeneous spaces”, Duke Math. J., 113 (2002), 259–312 | DOI | MR | Zbl
[31] F. Nazarov, S. Treil, A. Volberg, “The $Tb$-theorem on non-homogeneous spaces”, Acta Math., 190 (2003), 151–239 | DOI | MR | Zbl
[32] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, N.J., 1970 | MR
[33] E. M. Stein, Harmonic Analysis: Real-variable Methods, Orthogonality, and Oscillatory Integrals, Princeton University Press, Princeton, N.J., 1993 | MR | Zbl
[34] E. M. Stein, G. Weiss, “On the theory of harmonic functions of several variables. I. The theory of $H^p$-spaces”, Acta Math., 103 (1960), 25–62 | DOI | MR | Zbl
[35] J. O. Strömberg, A. Torchinsky, Weighted Hardy Spaces, Lecture Notes in Math., 1381, Springer-Verlag, Berlin, 1989 | MR | Zbl
[36] C. Tan, J. Li, “Littlewood–Paley theory on metric measure spaces with non doubling measures and its applications”, Sci. China Math. (to appear)
[37] X. Tolsa, “BMO, $H^1$, and Calderón–Zygmund operators for non doubling measures”, Math. Ann., 319 (2001), 89–149 | DOI | MR | Zbl
[38] X. Tolsa, “Littlewood–Paley theory and the $T(1)$ theorem with non-doubling measures”, Adv. Math., 164 (2001), 57–116 | DOI | MR | Zbl
[39] X. Tolsa, “The space $H^1$ for nondoubling measures in terms of a grand maximal operator”, Trans. Amer. Math. Soc., 355 (2003), 315–348 | DOI | MR | Zbl
[40] X. Tolsa, “Painlevé's problem and the semiadditivity of analytic capacity”, Acta Math., 190 (2003), 105–149 | DOI | MR | Zbl
[41] X. Tolsa, “The semiadditivity of continuous analytic capacity and the inner boundary conjecture”, Amer. J. Math., 126 (2004), 523–567 | DOI | MR | Zbl
[42] X. Tolsa, “Bilipschitz maps, analytic capacity, and the Cauchy integral”, Ann. of Math. (2), 162 (2005), 1243–1304 | DOI | MR | Zbl
[43] A. Volberg, B. D. Wick, “Bergman-type singular operators and the characterization of Carleson measures for Besov–Sobolev spaces on the complex ball”, Amer. J. Math., 134 (2012), 949–992 | DOI | MR | Zbl
[44] Da. Yang, Do. Yang, G. Hu, The Hardy space $H^1$ with non-doubling measures and their applications, Lecture Notes in Math., 2084, Springer-Verlag, Berlin, 2013 | DOI | Zbl
[45] Y. Zhou, “Some endpoint estimates for local Littlewood–Paley operators”, Beijing Shifan Daxue Xuebao, 44 (2008), 577–580 (in Chinese) | MR | Zbl