The Hardy space $H^1$ on non-homogeneous spaces and its applications~-- a~survey
Eurasian mathematical journal, Tome 4 (2013) no. 2, pp. 104-139.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $(\mathcal X,d,\mu)$ be a metric measure space satisfying both the upper doubling and the geometrically doubling conditions. In this article, the authors give a survey on the Hardy space $H^1$ on non-homogeneous spaces and its applications. These results include: the regularized $\mathrm{BMO}$ spaces $\mathrm{RBMO}(\mu)$ and $\widetilde{\mathrm{RBMO}}(\mu)$, the regularized $\mathrm{BLO}$ spaces $\mathrm{RBLO}(\mu)$ and $\widetilde{\mathrm{RBLO}}(\mu)$, the Hardy spaces $H^1(\mu)$ and $\widetilde H^1(\mu)$, the behaviour of the Calderón–Zygmund operator and its maximal operator on Hardy spaces and Lebesgue spaces, a weighted norm inequality for the multilinear Calderón–Zygmund operator, the boundedness on Orlicz spaces and the endpoint estimate for the commutator generated by the Calderón–Zygmund operator or the generalized fractional integral with any $\mathrm{RBMO}(\mu)$ function or any $\widetilde{\mathrm{RBMO}}(\mu)$ function, and equivalent characterizations for the boundedness of the generalized fractional integral or the Marcinkiewicz integral, respectively.
@article{EMJ_2013_4_2_a6,
     author = {Da. Yang and Do. Yang and X. Fu},
     title = {The {Hardy} space $H^1$ on non-homogeneous spaces and its applications~-- a~survey},
     journal = {Eurasian mathematical journal},
     pages = {104--139},
     publisher = {mathdoc},
     volume = {4},
     number = {2},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2013_4_2_a6/}
}
TY  - JOUR
AU  - Da. Yang
AU  - Do. Yang
AU  - X. Fu
TI  - The Hardy space $H^1$ on non-homogeneous spaces and its applications~-- a~survey
JO  - Eurasian mathematical journal
PY  - 2013
SP  - 104
EP  - 139
VL  - 4
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2013_4_2_a6/
LA  - en
ID  - EMJ_2013_4_2_a6
ER  - 
%0 Journal Article
%A Da. Yang
%A Do. Yang
%A X. Fu
%T The Hardy space $H^1$ on non-homogeneous spaces and its applications~-- a~survey
%J Eurasian mathematical journal
%D 2013
%P 104-139
%V 4
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2013_4_2_a6/
%G en
%F EMJ_2013_4_2_a6
Da. Yang; Do. Yang; X. Fu. The Hardy space $H^1$ on non-homogeneous spaces and its applications~-- a~survey. Eurasian mathematical journal, Tome 4 (2013) no. 2, pp. 104-139. http://geodesic.mathdoc.fr/item/EMJ_2013_4_2_a6/

[1] T. A. Bui, X. T. Duong, “Hardy spaces, regularized BMO spaces and the boundedness of Calderón–Zygmund operators on non-homogeneous spaces”, J. Geom. Anal., 23 (2013), 895–932 | DOI | MR | Zbl

[2] R. R. Coifman, “A real variable characterization of $H^p$”, Studia Math., 51 (1974), 269–274 | MR | Zbl

[3] R. R. Coifman, “Characterization of Fourier transforms of Hardy spaces”, Proc. Nat. Acad. Sci. U.S.A., 71 (1974), 4133–4134 | DOI | MR | Zbl

[4] R. R. Coifman, G. Weiss, Analyse Harmonique Non-Commutative sur Certains Espaces Homogènes, Lecture Notes in Math., 242, Springer-Verlag, Berlin–New York, 1971 | MR | Zbl

[5] R. R. Coifman, G. Weiss, “Extensions of Hardy spaces and their use in analysis”, Bull. Amer. Math. Soc., 83 (1977), 569–645 | DOI | MR | Zbl

[6] D. Deng, Y. Han, Harmonic Analysis on Spaces of Homogeneous Type, Lecture Notes in Math., 1966, Springer-Verlag, Berlin, 2009 | MR | Zbl

[7] C. Fefferman, E. M. Stein, “$H^p$ spaces of several variables”, Acta Math., 129 (1972), 137–193 | DOI | MR | Zbl

[8] X. Fu, D. Yang, W. Yuan, “Boundedness on Orlicz spaces for multilinear commutators of Calderón–Zygmund operators on non-homogeneous spaces”, Taiwanese J. Math., 16 (2012), 2203–2238 | MR | Zbl

[9] X. Fu, D. Yang, W. Yuan, Generalized fractional integrals and their commutators over nonhomogeneous spaces, Submitted

[10] X. Fu, Da. Yang, Do. Yang, The molecular characterization of the Hardy space $H^1$ on nonhomogeneous spaces and its application, Submitted

[11] Y. Han, D. Müller, D. Yang, “A theory of Besov and Triebel–Lizorkin spaces on metric measure spaces modeled on Carnot–Carathéodory spaces”, Abstr. Appl. Anal., 2008 (2008), Art. ID 893409, 250 pp. | DOI | MR

[12] G. Hu, H. Lin, D. Yang, “Marcinkiewicz integrals with non-doubling measures”, Integral Equations Operator Theory, 58 (2007), 205–238 | DOI | MR | Zbl

[13] G. Hu, Y. Meng, “Calderón–Zygmund operators with non-doubling measures”, Adv. Math. (China) (to appear)

[14] G. Hu, Y. Meng, D. Yang, “New atomic characterization of $H^1$ space with non-doubling measures and its applications”, Math. Proc. Cambridge Philos. Soc., 138 (2005), 151–171 | DOI | MR | Zbl

[15] G. Hu, Y. Meng, D. Yang, “A new characterization of regularized BMO spaces on nonhomogeneous spaces and its applications”, Ann. Acad. Sci. Fenn. Math., 38 (2013), 3–27 | DOI | Zbl

[16] G. Hu, Y. Meng, D. Yang, “Weighted norm inequalities for multilinear Calderón–Zygmund operators on non-homogeneous metric measure spaces”, Forum Math., 2012 | DOI

[17] T. Hytönen, “A framework for non-homogeneous analysis on metric spaces, and the RBMO space of Tolsa”, Publ. Mat., 54 (2010), 485–504 | DOI | MR | Zbl

[18] T. Hytönen, S. Liu, Da. Yang, Do. Yang, “Boundedness of Calderón–Zygmund operators on nonhomogeneous metric measure spaces”, Canad. J. Math., 64 (2012), 892–923 | DOI | MR | Zbl

[19] T. Hytönen, H. Martikainen, “Non-homogeneous $Tb$ theorem and random dyadic cubes on metric measure spaces”, J. Geom. Anal., 22 (2012), 1071–1107 | DOI | MR | Zbl

[20] T. Hytönen, Da. Yang, Do. Yang, “The Hardy space $H^1$ on non-homogeneous metric spaces”, Math. Proc. Cambridge Philos. Soc., 153 (2012), 9–31 | DOI | MR | Zbl

[21] R. H. Latter, “A characterization of $H^p(\mathbb R^n)$ in terms of atoms”, Studia Math., 62 (1978), 93–101 | MR | Zbl

[22] H. Lin, D. Yang, “Spaces of type BLO on non-homogeneous metric measure spaces”, Front. Math. China, 6 (2011), 271–292 | DOI | MR | Zbl

[23] H. Lin, D. Yang, “An interpolation theorem for sublinear operators on non-homogeneous metric measure spaces”, Banach J. Math. Anal., 6 (2012), 168–179 | DOI | MR | Zbl

[24] H. Lin, D. Yang, “Equivalent boundedness of Marcinkiewicz integrals on non-homogeneous metric measure spaces”, Sci. China Math. (to appear)

[25] L. Liu, Da. Yang, Do. Yang, “Atomic Hardy-type spaces between $H^1$ and $L^1$ on metric spaces with non-doubling measures”, Acta Math. Sin. (Engl. Ser.), 27 (2011), 2445–2468 | DOI | MR | Zbl

[26] S. Liu, Y. Meng, D. Yang, “Boundedness of maximal Calderón–Zygmund operators on nonhomogeneous metric measure spaces”, Proc. Roy. Soc. Edinburgh Sect. A (to appear)

[27] S. Liu, Da. Yang, Do. Yang, “Boundedness of Calderón–Zygmund operators on non-homogeneous metric measure spaces: Equivalent characterizations”, J. Math. Anal. Appl., 386 (2012), 258–272 | DOI | MR | Zbl

[28] F. Nazarov, S. Treil, A. Volberg, “Cauchy integral and Calderón–Zygmund operators on nonhomogeneous spaces”, Internat. Math. Res. Notices, 15 (1997), 703–726 | DOI | MR | Zbl

[29] F. Nazarov, S. Treil, A. Volberg, “Weak type estimates and Cotlar inequalities for Calderón–Zygmund operators on nonhomogeneous spaces”, Internat. Math. Res. Notices, 9 (1998), 463–487 | DOI | MR | Zbl

[30] F. Nazarov, S. Treil, A. Volberg, “Accretive system $Tb$-theorems on nonhomogeneous spaces”, Duke Math. J., 113 (2002), 259–312 | DOI | MR | Zbl

[31] F. Nazarov, S. Treil, A. Volberg, “The $Tb$-theorem on non-homogeneous spaces”, Acta Math., 190 (2003), 151–239 | DOI | MR | Zbl

[32] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, N.J., 1970 | MR

[33] E. M. Stein, Harmonic Analysis: Real-variable Methods, Orthogonality, and Oscillatory Integrals, Princeton University Press, Princeton, N.J., 1993 | MR | Zbl

[34] E. M. Stein, G. Weiss, “On the theory of harmonic functions of several variables. I. The theory of $H^p$-spaces”, Acta Math., 103 (1960), 25–62 | DOI | MR | Zbl

[35] J. O. Strömberg, A. Torchinsky, Weighted Hardy Spaces, Lecture Notes in Math., 1381, Springer-Verlag, Berlin, 1989 | MR | Zbl

[36] C. Tan, J. Li, “Littlewood–Paley theory on metric measure spaces with non doubling measures and its applications”, Sci. China Math. (to appear)

[37] X. Tolsa, “BMO, $H^1$, and Calderón–Zygmund operators for non doubling measures”, Math. Ann., 319 (2001), 89–149 | DOI | MR | Zbl

[38] X. Tolsa, “Littlewood–Paley theory and the $T(1)$ theorem with non-doubling measures”, Adv. Math., 164 (2001), 57–116 | DOI | MR | Zbl

[39] X. Tolsa, “The space $H^1$ for nondoubling measures in terms of a grand maximal operator”, Trans. Amer. Math. Soc., 355 (2003), 315–348 | DOI | MR | Zbl

[40] X. Tolsa, “Painlevé's problem and the semiadditivity of analytic capacity”, Acta Math., 190 (2003), 105–149 | DOI | MR | Zbl

[41] X. Tolsa, “The semiadditivity of continuous analytic capacity and the inner boundary conjecture”, Amer. J. Math., 126 (2004), 523–567 | DOI | MR | Zbl

[42] X. Tolsa, “Bilipschitz maps, analytic capacity, and the Cauchy integral”, Ann. of Math. (2), 162 (2005), 1243–1304 | DOI | MR | Zbl

[43] A. Volberg, B. D. Wick, “Bergman-type singular operators and the characterization of Carleson measures for Besov–Sobolev spaces on the complex ball”, Amer. J. Math., 134 (2012), 949–992 | DOI | MR | Zbl

[44] Da. Yang, Do. Yang, G. Hu, The Hardy space $H^1$ with non-doubling measures and their applications, Lecture Notes in Math., 2084, Springer-Verlag, Berlin, 2013 | DOI | Zbl

[45] Y. Zhou, “Some endpoint estimates for local Littlewood–Paley operators”, Beijing Shifan Daxue Xuebao, 44 (2008), 577–580 (in Chinese) | MR | Zbl