The Hardy space $H^1$ on non-homogeneous spaces and its applications~-- a~survey
Eurasian mathematical journal, Tome 4 (2013) no. 2, pp. 104-139

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $(\mathcal X,d,\mu)$ be a metric measure space satisfying both the upper doubling and the geometrically doubling conditions. In this article, the authors give a survey on the Hardy space $H^1$ on non-homogeneous spaces and its applications. These results include: the regularized $\mathrm{BMO}$ spaces $\mathrm{RBMO}(\mu)$ and $\widetilde{\mathrm{RBMO}}(\mu)$, the regularized $\mathrm{BLO}$ spaces $\mathrm{RBLO}(\mu)$ and $\widetilde{\mathrm{RBLO}}(\mu)$, the Hardy spaces $H^1(\mu)$ and $\widetilde H^1(\mu)$, the behaviour of the Calderón–Zygmund operator and its maximal operator on Hardy spaces and Lebesgue spaces, a weighted norm inequality for the multilinear Calderón–Zygmund operator, the boundedness on Orlicz spaces and the endpoint estimate for the commutator generated by the Calderón–Zygmund operator or the generalized fractional integral with any $\mathrm{RBMO}(\mu)$ function or any $\widetilde{\mathrm{RBMO}}(\mu)$ function, and equivalent characterizations for the boundedness of the generalized fractional integral or the Marcinkiewicz integral, respectively.
@article{EMJ_2013_4_2_a6,
     author = {Da. Yang and Do. Yang and X. Fu},
     title = {The {Hardy} space $H^1$ on non-homogeneous spaces and its applications~-- a~survey},
     journal = {Eurasian mathematical journal},
     pages = {104--139},
     publisher = {mathdoc},
     volume = {4},
     number = {2},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2013_4_2_a6/}
}
TY  - JOUR
AU  - Da. Yang
AU  - Do. Yang
AU  - X. Fu
TI  - The Hardy space $H^1$ on non-homogeneous spaces and its applications~-- a~survey
JO  - Eurasian mathematical journal
PY  - 2013
SP  - 104
EP  - 139
VL  - 4
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2013_4_2_a6/
LA  - en
ID  - EMJ_2013_4_2_a6
ER  - 
%0 Journal Article
%A Da. Yang
%A Do. Yang
%A X. Fu
%T The Hardy space $H^1$ on non-homogeneous spaces and its applications~-- a~survey
%J Eurasian mathematical journal
%D 2013
%P 104-139
%V 4
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2013_4_2_a6/
%G en
%F EMJ_2013_4_2_a6
Da. Yang; Do. Yang; X. Fu. The Hardy space $H^1$ on non-homogeneous spaces and its applications~-- a~survey. Eurasian mathematical journal, Tome 4 (2013) no. 2, pp. 104-139. http://geodesic.mathdoc.fr/item/EMJ_2013_4_2_a6/