The small parameter method for regular linear differential equations on unbounded domains
Eurasian mathematical journal, Tome 4 (2013) no. 2, pp. 64-81
Voir la notice de l'article provenant de la source Math-Net.Ru
Algorithms for the asymptotic expansion of the solution to the Dirichlet problem for a regular equation with a small parameter $\varepsilon$ ($\varepsilon>0$) at higher derivatives on an unbounded domain (the whole space, the half space and a strip), based on the solution to the degenerate (as $\varepsilon\to0$) Dirichlet problem for a regular hypoelliptic equation of the lower order, are described. Estimates for remainder terms of those expansions are obtained.
@article{EMJ_2013_4_2_a4,
author = {G. A. Karapetyan and H. G. Tananyan},
title = {The small parameter method for regular linear differential equations on unbounded domains},
journal = {Eurasian mathematical journal},
pages = {64--81},
publisher = {mathdoc},
volume = {4},
number = {2},
year = {2013},
language = {en},
url = {http://geodesic.mathdoc.fr/item/EMJ_2013_4_2_a4/}
}
TY - JOUR AU - G. A. Karapetyan AU - H. G. Tananyan TI - The small parameter method for regular linear differential equations on unbounded domains JO - Eurasian mathematical journal PY - 2013 SP - 64 EP - 81 VL - 4 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/EMJ_2013_4_2_a4/ LA - en ID - EMJ_2013_4_2_a4 ER -
G. A. Karapetyan; H. G. Tananyan. The small parameter method for regular linear differential equations on unbounded domains. Eurasian mathematical journal, Tome 4 (2013) no. 2, pp. 64-81. http://geodesic.mathdoc.fr/item/EMJ_2013_4_2_a4/