The small parameter method for regular linear differential equations on unbounded domains
Eurasian mathematical journal, Tome 4 (2013) no. 2, pp. 64-81.

Voir la notice de l'article provenant de la source Math-Net.Ru

Algorithms for the asymptotic expansion of the solution to the Dirichlet problem for a regular equation with a small parameter $\varepsilon$ ($\varepsilon>0$) at higher derivatives on an unbounded domain (the whole space, the half space and a strip), based on the solution to the degenerate (as $\varepsilon\to0$) Dirichlet problem for a regular hypoelliptic equation of the lower order, are described. Estimates for remainder terms of those expansions are obtained.
@article{EMJ_2013_4_2_a4,
     author = {G. A. Karapetyan and H. G. Tananyan},
     title = {The small parameter method for regular linear differential equations on unbounded domains},
     journal = {Eurasian mathematical journal},
     pages = {64--81},
     publisher = {mathdoc},
     volume = {4},
     number = {2},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2013_4_2_a4/}
}
TY  - JOUR
AU  - G. A. Karapetyan
AU  - H. G. Tananyan
TI  - The small parameter method for regular linear differential equations on unbounded domains
JO  - Eurasian mathematical journal
PY  - 2013
SP  - 64
EP  - 81
VL  - 4
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2013_4_2_a4/
LA  - en
ID  - EMJ_2013_4_2_a4
ER  - 
%0 Journal Article
%A G. A. Karapetyan
%A H. G. Tananyan
%T The small parameter method for regular linear differential equations on unbounded domains
%J Eurasian mathematical journal
%D 2013
%P 64-81
%V 4
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2013_4_2_a4/
%G en
%F EMJ_2013_4_2_a4
G. A. Karapetyan; H. G. Tananyan. The small parameter method for regular linear differential equations on unbounded domains. Eurasian mathematical journal, Tome 4 (2013) no. 2, pp. 64-81. http://geodesic.mathdoc.fr/item/EMJ_2013_4_2_a4/

[1] J. Awrejcewicz, V. A. Krysko, Introduction to asymptotic methods, T G., Boca Raton, 2006 | MR

[2] v. 1, 2, J.Wiley and Sons, New York, 1979 | MR | Zbl

[3] G. G. Ghazaryan, A. G. Karapetyan, “On the convergence of Galerkin approximations to the solution of the Dirichlet problem for some general equations”, Mat. Sb. (N.S.), 124(166):3(7) (1984), 291–306 | MR | Zbl

[4] G. G. Ghazaryan, “On density of smooth functions in $\mathring W^r_p(\Omega)$”, Mat. Notes, 2:1 (1967), 45–52 | MR | Zbl

[5] L. Hörmander, The analysis of linear partial differential operators, derivatives, Sringer-Verlag, Berlin–Heidelberg–New York–Tokyo, 1983

[6] E. M. Jager, Jiang Furu, The theory of singular perturbations, North-Holland Series in Applied Mathematics and Mechanics, 42, Elsevier, Amsterdam, 1996 | MR

[7] R. S. Johnson, Singular perturbation theory, Techniques with applications to engineering, Springer, 2005 | MR

[8] G. A. Karapetyan, H. G. Tananyan, “Degeneration of semielliptic equations with constant coefficients in rectangular parallelepipeds”, Journal of Contemporary Mathematical Analysis (Armenian Academy of Sciences), 45:2 (2010), 82–93 | DOI | MR

[9] G. A. Karapetyan, “Regular equations depending on a parameter”, Izvestiya AN ArmSSR, 25:2 (1990), 192–202 (in Russian) | MR

[10] V. P. Mikhailov, “Behavior at infinity of a certain class of polynomials”, Trudy Mat. Inst. Steklov, 91, 1967, 59–80, English Transl. (in Russian) | MR | Zbl

[11] V. P. Mikhailov, “The first boundary value problem for quasi-elliptic and quasi-parabolic equations”, Trudy Mat. Inst. Steklov, 91, 1967, 81–99, English transl. (in Russian) | MR | Zbl

[12] A. H. Nayfeh, Perturbation methods, Wiley–VCH, 2004 | MR | Zbl

[13] S. M. Nikol'skii, “The first boundary problem for a general linear equation”, Doklady AN USSR Ser. Mat., 146:4 (1962), 767–769, English transl. (in Russian) | MR

[14] S. M. Nikol'skii, “A proof of the uniqueness of the classical solution of the first boundary-value problem for a general linear partial differential equation in a convex bounded region”, Izvestiya AN USSR Ser. Mat., 27:5 (1963), 1113–1134, English transl. (in Russian) | MR

[15] S. M. Nikol'skii, “A variational problem”, Mat. Sb. (N.S.), 62(104):1 (1963), 53–75, English transl. (in Russian) | MR | Zbl

[16] E. Pehkonen, “Ein hypoelliptisches Diriclet Problem”, Com. Mat. Phys., 48:3 (1978), 131–143 | MR | Zbl

[17] L. S. Pontryagin, Ordinary differential equations, Nauka, Moscow, 1982 (in Russian) | MR | Zbl

[18] H. G. Tananyan, “The finite element method for linear differential semielliptic equations”, Vestnik RAU, Physical, Mathematical and Natural Sciences, 2 (2009), 52–60 (in Russian)

[19] H. G. Tananyan, “The small parameter method for semi-elliptic equations with constants coefficients in the half space”, Mathematics in Higher School, 6:1 (2010), 37–46 (in Russian)

[20] H. G. Tananyan, “On the uniform solvability of boundary value problem for one class of singularly perturbed regular equations”, Proc. A. Razmadze Math. Inst., 152, Tbilisi, 2010, 111–128 | MR | Zbl

[21] V. A. Trenogin, “The development and applications of the asymptotic method of Lyusternik and Vishik”, Russian Math. Surveys, 25:4 (1970), 119–156, English tranls. (in Russian) | DOI | MR | Zbl

[22] F. Verhulst, Methods and applications of singular perturbations, boundary layers and multiple timescale dynamics, Springer, 2005 | MR | Zbl

[23] M. I. Vishik, L. A. Lyusternik, “Regular degeneration and boundary layer for linear differential equations with small parameter”, Uspekhi Mat. Nauk., 12:5(77) (1957), 3–122, English transl. (in Russian) | MR | Zbl