The small parameter method for regular linear differential equations on unbounded domains
Eurasian mathematical journal, Tome 4 (2013) no. 2, pp. 64-81

Voir la notice de l'article provenant de la source Math-Net.Ru

Algorithms for the asymptotic expansion of the solution to the Dirichlet problem for a regular equation with a small parameter $\varepsilon$ ($\varepsilon>0$) at higher derivatives on an unbounded domain (the whole space, the half space and a strip), based on the solution to the degenerate (as $\varepsilon\to0$) Dirichlet problem for a regular hypoelliptic equation of the lower order, are described. Estimates for remainder terms of those expansions are obtained.
@article{EMJ_2013_4_2_a4,
     author = {G. A. Karapetyan and H. G. Tananyan},
     title = {The small parameter method for regular linear differential equations on unbounded domains},
     journal = {Eurasian mathematical journal},
     pages = {64--81},
     publisher = {mathdoc},
     volume = {4},
     number = {2},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2013_4_2_a4/}
}
TY  - JOUR
AU  - G. A. Karapetyan
AU  - H. G. Tananyan
TI  - The small parameter method for regular linear differential equations on unbounded domains
JO  - Eurasian mathematical journal
PY  - 2013
SP  - 64
EP  - 81
VL  - 4
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2013_4_2_a4/
LA  - en
ID  - EMJ_2013_4_2_a4
ER  - 
%0 Journal Article
%A G. A. Karapetyan
%A H. G. Tananyan
%T The small parameter method for regular linear differential equations on unbounded domains
%J Eurasian mathematical journal
%D 2013
%P 64-81
%V 4
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2013_4_2_a4/
%G en
%F EMJ_2013_4_2_a4
G. A. Karapetyan; H. G. Tananyan. The small parameter method for regular linear differential equations on unbounded domains. Eurasian mathematical journal, Tome 4 (2013) no. 2, pp. 64-81. http://geodesic.mathdoc.fr/item/EMJ_2013_4_2_a4/