Approximate differentiability of mappings of Carnot--Carath\'eodory spaces
Eurasian mathematical journal, Tome 4 (2013) no. 2, pp. 10-48.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the approximate differentiability of measurable mappings of Carnot–Carathéodory spaces. We show that the approximate differentiability almost everywhere is equivalent to the approximate differentiability along the basic horizontal vector fields almost everywhere. As a geometric tool we prove the generalization of Rashevsky–Chow theorem for $C^1$-smooth vector fields. The main result of the paper extends theorems on approximate differentiability proved by Stepanoff (1923, 1925) and Whitney (1951) for Euclidean spaces and by Vodopyanov (2000) for Carnot groups.
@article{EMJ_2013_4_2_a1,
     author = {S. G. Basalaev and S. K. Vodopyanov},
     title = {Approximate differentiability of mappings of {Carnot--Carath\'eodory} spaces},
     journal = {Eurasian mathematical journal},
     pages = {10--48},
     publisher = {mathdoc},
     volume = {4},
     number = {2},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2013_4_2_a1/}
}
TY  - JOUR
AU  - S. G. Basalaev
AU  - S. K. Vodopyanov
TI  - Approximate differentiability of mappings of Carnot--Carath\'eodory spaces
JO  - Eurasian mathematical journal
PY  - 2013
SP  - 10
EP  - 48
VL  - 4
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2013_4_2_a1/
LA  - en
ID  - EMJ_2013_4_2_a1
ER  - 
%0 Journal Article
%A S. G. Basalaev
%A S. K. Vodopyanov
%T Approximate differentiability of mappings of Carnot--Carath\'eodory spaces
%J Eurasian mathematical journal
%D 2013
%P 10-48
%V 4
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2013_4_2_a1/
%G en
%F EMJ_2013_4_2_a1
S. G. Basalaev; S. K. Vodopyanov. Approximate differentiability of mappings of Carnot--Carath\'eodory spaces. Eurasian mathematical journal, Tome 4 (2013) no. 2, pp. 10-48. http://geodesic.mathdoc.fr/item/EMJ_2013_4_2_a1/

[1] V. I. Arnol'd, Ordinary Differential Equations, Springer-Verlag, Berlin–Heidelberg, 1992 | MR

[2] A. Bonfiglioli, E. Lanconelli, F. Uguzonni, Stratified Lie Groups and Potential Theory for their Sub-Laplasians, Springer-Verlag, Berlin–Heidelberg, 2007 | MR | Zbl

[3] W. L. Chow, “Über systeme von linearen partiallen differentialgleichungen erster ordnung”, Math. Ann., 117 (1939), 98–105 | MR | Zbl

[4] H. Federer, Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften, 153, Springer-Verlag New York Inc., New York, 1969 | MR | Zbl

[5] G. B. Folland, E. M. Stein, Hardy spaces on homogeneous groups, Math notes, 28, Princeton Univ. Press, Princeton, 1982 | MR | Zbl

[6] A. V. Greshnov, “A proof of Gromov Theorem on homogeneous nilpotent approximation for $C^1$-smooth vector fields”, Mathematicheskie Trudy, 15:2 (2012), 72–88 | MR

[7] M. Gromov, “Carnot–Carathéodory spaces seen from within”, Sub-Riemannian Geometry, Prog. Math., 144, Birkhäuser, Basel, 1996, 72–323 | MR

[8] L. Hörmander, “Hypoelliptic second order differential equations”, Acta Math., 119 (1967), 147–171 | DOI | MR | Zbl

[9] M. Karmanova, “A new approach to investigation of Carnot–Carathéodory geometry”, Geom. Func. Anal., 21:6 (2011), 1358–1374 | DOI | MR | Zbl

[10] M. Karmanova, “Convergence of scaled vector fields and local approximation theorem on Carnot–Carathéodory spaces and applications”, Dokl. AN, 440:6 (2011), 736–742 | MR | Zbl

[11] M. Karmanova, “The Area Formula for Lipschitz Mappings of Carnot–Carathéodory Spaces”, Izvestiya: Mathematics, (submitted)

[12] M. Karmanova, S. Vodopyanov, “Geometry of Carnot–Carathéodory spaces, differentiability and coarea formula”, Analysis and Mathematical Physics, Birkhäuser, 2009, 284–387 | MR

[13] M. Karmanova, S. Vodopyanov, “On Local Approximation Theorem on Equiregular Carnot–Carathéodory spaces”, Proceedings of “INDAM Meeting on Geometric Control and Sub-Riemannian Geometry” (Cortona, May 2012), Springer INdAM Series, 2013 (to appear)

[14] A. Koranyi, H. M. Reimann, “Foundations for the theory of quasiconformal mappings on the Heisenberg group”, Adv. Math., 111 (1995), 1–87 | DOI | MR | Zbl

[15] S. Lie, F. Engel, Theorie der Transformationsgruppen, v. 1–3, Lpz., 1888–1893

[16] V. Magnani, “Differentiability and area formula on stratified Lie groups”, Houston J. Math., 27:2 (2001), 297–323 | MR | Zbl

[17] G. Metivier, “Fonction spectrale et valeurs propres d'une classe d'opérateurs non elliptiques”, Commun. Partial Differential Equations, 1 (1976), 467–519 | DOI | MR | Zbl

[18] J. Mitchell, “On Carnot–Carathéodory metrics”, J. Differential Geometry, 21 (1985), 35–45 | MR | Zbl

[19] A. Nagel, E. M. Stein, S. Waigner, “Balls and metrics defined by vector fields. I: Basic properties”, Acta Math. (2), 155 (1985), 103–147 | DOI | MR | Zbl

[20] P. Pansu, “Metriqués de Carnot–Carathéodory et quasiisométries des espaces symétriques de rang un”, Ann. of Math., 119 (1989), 1–60 | DOI | MR

[21] S. Pauls, “A notion of rectifiability modeled on Carnot groups”, Indiana Univ. Math. J., 53 (2004), 49–82 | DOI | MR

[22] M. M. Postnikov, Lectures in Geometry. Semester V: Lie Groups and Lie Algebras, Nauka, Moscow, 1982 | MR | Zbl

[23] H. Rademacher, “Über partielle und totalle Differenzierbarkeit von Funktionen mehrerer Variablen und über die Transformation der Doppelintegrale”, Math. Ann., 79:4 (1919), 340–359 | DOI | MR

[24] P. K. Rashevsky, “Any two points of a totally nonholonomic space may be connected by an admissable line”, Uch. Zap. Ped. Inst. im. Liebknechta, Ser. Phys. Math., 2 (1938), 83–94

[25] Yu. G. Reshetnyak, “Generalized derivatives and differentiability almost everywhere”, Math. USSRSb, 4 (1968), 293–302 | DOI | MR | Zbl

[26] L. P. Rotchild, E. S. Stein, “Hypoelliptic differential operators and nilpotent groups”, Acta Math., 137 (1976), 247–320 | DOI | MR

[27] W. Stepanoff, “Über totale Differenzierbarkeit”, Math. Ann., 90 (1923), 318–320 | DOI | MR | Zbl

[28] W. Stepanoff, “Sur les conditions de l'existence de la diférentielle totale”, Matem. Sborn. Moscow, 32:3 (1925), 511–527 | Zbl

[29] S. K. Vodop'yanov, “Monotone functions and quasiconformal mappings on Carnot groups”, Siberian Math. J., 37:6 (1996), 1113–1136 | DOI | MR | Zbl

[30] S. K. Vodop'yanov, “Mappings with bounded distortion and with finite distortion on Carnot groups”, Siberian Math. J., 40:4 (1999), 644–677 | DOI | MR | Zbl

[31] S. K. Vodop'yanov, “P-differentiability on Carnot groups in different topologies and related topics”, Proceedings on Analysis and Geometry, eds. S. K. Vodopyanov, Sobolev Institute Press, Novosibirsk, 2000, 603–670 | MR | Zbl

[32] S. K. Vodop'yanov, “Differentiability of mappings in the geometry of Carnot manifolds”, Siberian Math. J., 48:2 (2007), 197–213 | DOI | MR | Zbl

[33] S. K. Vodopyanov, “Geometry of Carnot–Carathéodory Spaces and Differentiability of Mappings”, The interaction of analysis and geometry, Contemp. Math., 424, Amer. Math. Soc., Providence, RI, 2007, 247–302 | DOI | MR

[34] S. K. Vodopyanov, “Foundations of the theory of mappings with bounded distortion on Carnot groups”, The interaction of analysis and geometry, Contemp. Math., 424, Amer. Math. Soc., Providence, RI, 2007, 303–344 | DOI | MR | Zbl

[35] S. K. Vodop'yanov, A. V. Greshnov, “On the differentiability of mappings of Carnot–Carathéodory spaces”, Doklady Math., 67:2 (2003), 246–251 | MR

[36] S. K. Vodopyanov, M. B. Karmanova, “Local Geometry of Carnot Manifolds Under Minimal Smoothness”, Doklady Math., 75:2 (2007), 240–246 | DOI | MR | Zbl

[37] S. K. Vodop'yanov, M. B. Karmanova, “Local approximation theorem on Carnot manifolds under minimal smoothness”, Dokl. AN, 427:6 (2009), 731–736 | MR | Zbl

[38] S. K. Vodop'yanov, A. D. Ukhlov, “Approximately differentiable tranformations and the change of variables on nilpotent groups”, Siberian Math. J., 37:1 (1996), 62–78 | DOI | MR | Zbl

[39] S. K. Vodop'yanov, A. D. Ukhlov, “Sobolev spaces and $(P,Q)$-quasiconformal mappings of Carnot groups”, Siberian Math. J., 39:4 (1998), 665–682 | DOI | MR | Zbl

[40] H. Whitney, “On totally differentiable and smooth functions”, Pacific J. Math., 1 (1951), 143–159 | DOI | MR | Zbl