Approximate differentiability of mappings of Carnot--Carath\'eodory spaces
Eurasian mathematical journal, Tome 4 (2013) no. 2, pp. 10-48

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the approximate differentiability of measurable mappings of Carnot–Carathéodory spaces. We show that the approximate differentiability almost everywhere is equivalent to the approximate differentiability along the basic horizontal vector fields almost everywhere. As a geometric tool we prove the generalization of Rashevsky–Chow theorem for $C^1$-smooth vector fields. The main result of the paper extends theorems on approximate differentiability proved by Stepanoff (1923, 1925) and Whitney (1951) for Euclidean spaces and by Vodopyanov (2000) for Carnot groups.
@article{EMJ_2013_4_2_a1,
     author = {S. G. Basalaev and S. K. Vodopyanov},
     title = {Approximate differentiability of mappings of {Carnot--Carath\'eodory} spaces},
     journal = {Eurasian mathematical journal},
     pages = {10--48},
     publisher = {mathdoc},
     volume = {4},
     number = {2},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2013_4_2_a1/}
}
TY  - JOUR
AU  - S. G. Basalaev
AU  - S. K. Vodopyanov
TI  - Approximate differentiability of mappings of Carnot--Carath\'eodory spaces
JO  - Eurasian mathematical journal
PY  - 2013
SP  - 10
EP  - 48
VL  - 4
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2013_4_2_a1/
LA  - en
ID  - EMJ_2013_4_2_a1
ER  - 
%0 Journal Article
%A S. G. Basalaev
%A S. K. Vodopyanov
%T Approximate differentiability of mappings of Carnot--Carath\'eodory spaces
%J Eurasian mathematical journal
%D 2013
%P 10-48
%V 4
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2013_4_2_a1/
%G en
%F EMJ_2013_4_2_a1
S. G. Basalaev; S. K. Vodopyanov. Approximate differentiability of mappings of Carnot--Carath\'eodory spaces. Eurasian mathematical journal, Tome 4 (2013) no. 2, pp. 10-48. http://geodesic.mathdoc.fr/item/EMJ_2013_4_2_a1/