Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2013_4_2_a1, author = {S. G. Basalaev and S. K. Vodopyanov}, title = {Approximate differentiability of mappings of {Carnot--Carath\'eodory} spaces}, journal = {Eurasian mathematical journal}, pages = {10--48}, publisher = {mathdoc}, volume = {4}, number = {2}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2013_4_2_a1/} }
TY - JOUR AU - S. G. Basalaev AU - S. K. Vodopyanov TI - Approximate differentiability of mappings of Carnot--Carath\'eodory spaces JO - Eurasian mathematical journal PY - 2013 SP - 10 EP - 48 VL - 4 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/EMJ_2013_4_2_a1/ LA - en ID - EMJ_2013_4_2_a1 ER -
S. G. Basalaev; S. K. Vodopyanov. Approximate differentiability of mappings of Carnot--Carath\'eodory spaces. Eurasian mathematical journal, Tome 4 (2013) no. 2, pp. 10-48. http://geodesic.mathdoc.fr/item/EMJ_2013_4_2_a1/
[1] V. I. Arnol'd, Ordinary Differential Equations, Springer-Verlag, Berlin–Heidelberg, 1992 | MR
[2] A. Bonfiglioli, E. Lanconelli, F. Uguzonni, Stratified Lie Groups and Potential Theory for their Sub-Laplasians, Springer-Verlag, Berlin–Heidelberg, 2007 | MR | Zbl
[3] W. L. Chow, “Über systeme von linearen partiallen differentialgleichungen erster ordnung”, Math. Ann., 117 (1939), 98–105 | MR | Zbl
[4] H. Federer, Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften, 153, Springer-Verlag New York Inc., New York, 1969 | MR | Zbl
[5] G. B. Folland, E. M. Stein, Hardy spaces on homogeneous groups, Math notes, 28, Princeton Univ. Press, Princeton, 1982 | MR | Zbl
[6] A. V. Greshnov, “A proof of Gromov Theorem on homogeneous nilpotent approximation for $C^1$-smooth vector fields”, Mathematicheskie Trudy, 15:2 (2012), 72–88 | MR
[7] M. Gromov, “Carnot–Carathéodory spaces seen from within”, Sub-Riemannian Geometry, Prog. Math., 144, Birkhäuser, Basel, 1996, 72–323 | MR
[8] L. Hörmander, “Hypoelliptic second order differential equations”, Acta Math., 119 (1967), 147–171 | DOI | MR | Zbl
[9] M. Karmanova, “A new approach to investigation of Carnot–Carathéodory geometry”, Geom. Func. Anal., 21:6 (2011), 1358–1374 | DOI | MR | Zbl
[10] M. Karmanova, “Convergence of scaled vector fields and local approximation theorem on Carnot–Carathéodory spaces and applications”, Dokl. AN, 440:6 (2011), 736–742 | MR | Zbl
[11] M. Karmanova, “The Area Formula for Lipschitz Mappings of Carnot–Carathéodory Spaces”, Izvestiya: Mathematics, (submitted)
[12] M. Karmanova, S. Vodopyanov, “Geometry of Carnot–Carathéodory spaces, differentiability and coarea formula”, Analysis and Mathematical Physics, Birkhäuser, 2009, 284–387 | MR
[13] M. Karmanova, S. Vodopyanov, “On Local Approximation Theorem on Equiregular Carnot–Carathéodory spaces”, Proceedings of “INDAM Meeting on Geometric Control and Sub-Riemannian Geometry” (Cortona, May 2012), Springer INdAM Series, 2013 (to appear)
[14] A. Koranyi, H. M. Reimann, “Foundations for the theory of quasiconformal mappings on the Heisenberg group”, Adv. Math., 111 (1995), 1–87 | DOI | MR | Zbl
[15] S. Lie, F. Engel, Theorie der Transformationsgruppen, v. 1–3, Lpz., 1888–1893
[16] V. Magnani, “Differentiability and area formula on stratified Lie groups”, Houston J. Math., 27:2 (2001), 297–323 | MR | Zbl
[17] G. Metivier, “Fonction spectrale et valeurs propres d'une classe d'opérateurs non elliptiques”, Commun. Partial Differential Equations, 1 (1976), 467–519 | DOI | MR | Zbl
[18] J. Mitchell, “On Carnot–Carathéodory metrics”, J. Differential Geometry, 21 (1985), 35–45 | MR | Zbl
[19] A. Nagel, E. M. Stein, S. Waigner, “Balls and metrics defined by vector fields. I: Basic properties”, Acta Math. (2), 155 (1985), 103–147 | DOI | MR | Zbl
[20] P. Pansu, “Metriqués de Carnot–Carathéodory et quasiisométries des espaces symétriques de rang un”, Ann. of Math., 119 (1989), 1–60 | DOI | MR
[21] S. Pauls, “A notion of rectifiability modeled on Carnot groups”, Indiana Univ. Math. J., 53 (2004), 49–82 | DOI | MR
[22] M. M. Postnikov, Lectures in Geometry. Semester V: Lie Groups and Lie Algebras, Nauka, Moscow, 1982 | MR | Zbl
[23] H. Rademacher, “Über partielle und totalle Differenzierbarkeit von Funktionen mehrerer Variablen und über die Transformation der Doppelintegrale”, Math. Ann., 79:4 (1919), 340–359 | DOI | MR
[24] P. K. Rashevsky, “Any two points of a totally nonholonomic space may be connected by an admissable line”, Uch. Zap. Ped. Inst. im. Liebknechta, Ser. Phys. Math., 2 (1938), 83–94
[25] Yu. G. Reshetnyak, “Generalized derivatives and differentiability almost everywhere”, Math. USSRSb, 4 (1968), 293–302 | DOI | MR | Zbl
[26] L. P. Rotchild, E. S. Stein, “Hypoelliptic differential operators and nilpotent groups”, Acta Math., 137 (1976), 247–320 | DOI | MR
[27] W. Stepanoff, “Über totale Differenzierbarkeit”, Math. Ann., 90 (1923), 318–320 | DOI | MR | Zbl
[28] W. Stepanoff, “Sur les conditions de l'existence de la diférentielle totale”, Matem. Sborn. Moscow, 32:3 (1925), 511–527 | Zbl
[29] S. K. Vodop'yanov, “Monotone functions and quasiconformal mappings on Carnot groups”, Siberian Math. J., 37:6 (1996), 1113–1136 | DOI | MR | Zbl
[30] S. K. Vodop'yanov, “Mappings with bounded distortion and with finite distortion on Carnot groups”, Siberian Math. J., 40:4 (1999), 644–677 | DOI | MR | Zbl
[31] S. K. Vodop'yanov, “P-differentiability on Carnot groups in different topologies and related topics”, Proceedings on Analysis and Geometry, eds. S. K. Vodopyanov, Sobolev Institute Press, Novosibirsk, 2000, 603–670 | MR | Zbl
[32] S. K. Vodop'yanov, “Differentiability of mappings in the geometry of Carnot manifolds”, Siberian Math. J., 48:2 (2007), 197–213 | DOI | MR | Zbl
[33] S. K. Vodopyanov, “Geometry of Carnot–Carathéodory Spaces and Differentiability of Mappings”, The interaction of analysis and geometry, Contemp. Math., 424, Amer. Math. Soc., Providence, RI, 2007, 247–302 | DOI | MR
[34] S. K. Vodopyanov, “Foundations of the theory of mappings with bounded distortion on Carnot groups”, The interaction of analysis and geometry, Contemp. Math., 424, Amer. Math. Soc., Providence, RI, 2007, 303–344 | DOI | MR | Zbl
[35] S. K. Vodop'yanov, A. V. Greshnov, “On the differentiability of mappings of Carnot–Carathéodory spaces”, Doklady Math., 67:2 (2003), 246–251 | MR
[36] S. K. Vodopyanov, M. B. Karmanova, “Local Geometry of Carnot Manifolds Under Minimal Smoothness”, Doklady Math., 75:2 (2007), 240–246 | DOI | MR | Zbl
[37] S. K. Vodop'yanov, M. B. Karmanova, “Local approximation theorem on Carnot manifolds under minimal smoothness”, Dokl. AN, 427:6 (2009), 731–736 | MR | Zbl
[38] S. K. Vodop'yanov, A. D. Ukhlov, “Approximately differentiable tranformations and the change of variables on nilpotent groups”, Siberian Math. J., 37:1 (1996), 62–78 | DOI | MR | Zbl
[39] S. K. Vodop'yanov, A. D. Ukhlov, “Sobolev spaces and $(P,Q)$-quasiconformal mappings of Carnot groups”, Siberian Math. J., 39:4 (1998), 665–682 | DOI | MR | Zbl
[40] H. Whitney, “On totally differentiable and smooth functions”, Pacific J. Math., 1 (1951), 143–159 | DOI | MR | Zbl