Volterra operator from Bergman spaces to Morrey spaces
Eurasian mathematical journal, Tome 4 (2013) no. 1, pp. 135-144.

Voir la notice de l'article provenant de la source Math-Net.Ru

We characterize the boundedness of Volterra operators from Bergman spaces to Morrey spaces. Tools in the holomorphic function spaces, properties of Carleson measures and the atomic decomposition for functions in Bergman spaces are heavily employed.
@article{EMJ_2013_4_1_a9,
     author = {X. Wu and Zh. Wu},
     title = {Volterra operator from {Bergman} spaces to {Morrey} spaces},
     journal = {Eurasian mathematical journal},
     pages = {135--144},
     publisher = {mathdoc},
     volume = {4},
     number = {1},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2013_4_1_a9/}
}
TY  - JOUR
AU  - X. Wu
AU  - Zh. Wu
TI  - Volterra operator from Bergman spaces to Morrey spaces
JO  - Eurasian mathematical journal
PY  - 2013
SP  - 135
EP  - 144
VL  - 4
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2013_4_1_a9/
LA  - en
ID  - EMJ_2013_4_1_a9
ER  - 
%0 Journal Article
%A X. Wu
%A Zh. Wu
%T Volterra operator from Bergman spaces to Morrey spaces
%J Eurasian mathematical journal
%D 2013
%P 135-144
%V 4
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2013_4_1_a9/
%G en
%F EMJ_2013_4_1_a9
X. Wu; Zh. Wu. Volterra operator from Bergman spaces to Morrey spaces. Eurasian mathematical journal, Tome 4 (2013) no. 1, pp. 135-144. http://geodesic.mathdoc.fr/item/EMJ_2013_4_1_a9/

[1] A. Aleman, J. A. Cima, “An Integral Operator on $\mathcal{H}^p$ and Hardy's Inequality”, J. Anal. Math., 85 (2001), 157–176 | DOI | MR | Zbl

[2] L. Carleson, “An interpolation problem for bounded analytic functions”, Amer. J. Math., 80 (1958), 921–930 | DOI | MR | Zbl

[3] R. R. Coifman, R. Rochberg, “Representation theorems for holomorphic and harmonic functions in $L^p$”, Representation theorems for Hardy spaces, Asterisque, 77, Soc. Math. France, Paris, 1980, 11–66 | MR

[4] P. L. Duren, “Extension of a theorem of Carleson”, Bull. Amer. Math. Soc., 75 (1969), 143–146 | DOI | MR | Zbl

[5] J. B. Garnett, Bounded analytic functions, Academic Press, New York–London, 1982 | MR

[6] D. Luecking, “Trace ideal criteria for Toeplitz operators”, J. Funct. Anal., 73:2 (1987), 345–368 | DOI | MR | Zbl

[7] D. Luecking, “Embedding derivatives of Hardy spaces into Lebesgue spaces”, Proc. London Math. Soc., 63:3 (1991), 595–619 | DOI | MR | Zbl

[8] D. Luecking, “Embedding theorems for spaces of analytic functions via Khinchine's inequality”, Michigan Math. J., 40:2 (1993), 333–358 | DOI | MR | Zbl

[9] R. Rochberg, “Decomposition theorems for Bergman spaces and their applications”, Operators and function theory (Lancaster, 1984), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 153, Reidel, Dordrecht, 1985, 225–277 | MR

[10] Z. Wu, “Area operator on Bergman spaces”, Science in China: Series A Mathematics, 49:7 (2006), 987–1008 | DOI | MR | Zbl

[11] Z. Wu, “Volterra operator, area integral and Carleson measures”, Sciences in China: Series A Mathematics, 54:11 (2011), 2487–2500 | DOI | MR | Zbl

[12] Z. Wu, “A new characterization for Carleson measures and some applications”, Integral Equations Operator Theory, 71:2 (2011), 161–180 | DOI | MR | Zbl

[13] Z. Wu, C. Xie, “$Q$ spaces and Morrey spaces”, J. Funct. Anal., 201:1 (2003), 282–297 | DOI | MR | Zbl

[14] J. Xiao, Holomorphic $Q$ classes, Lecture Notes in Mathematics, 1767, Springer-Verlag, Berlin, 2001 | DOI | MR | Zbl

[15] I. V. Videnskii, “On an analogue of Carleson measures”, Dokl. Akad. Nauk SSSR, 298 (1988), 1042–1047 | MR