Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2013_4_1_a9, author = {X. Wu and Zh. Wu}, title = {Volterra operator from {Bergman} spaces to {Morrey} spaces}, journal = {Eurasian mathematical journal}, pages = {135--144}, publisher = {mathdoc}, volume = {4}, number = {1}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2013_4_1_a9/} }
X. Wu; Zh. Wu. Volterra operator from Bergman spaces to Morrey spaces. Eurasian mathematical journal, Tome 4 (2013) no. 1, pp. 135-144. http://geodesic.mathdoc.fr/item/EMJ_2013_4_1_a9/
[1] A. Aleman, J. A. Cima, “An Integral Operator on $\mathcal{H}^p$ and Hardy's Inequality”, J. Anal. Math., 85 (2001), 157–176 | DOI | MR | Zbl
[2] L. Carleson, “An interpolation problem for bounded analytic functions”, Amer. J. Math., 80 (1958), 921–930 | DOI | MR | Zbl
[3] R. R. Coifman, R. Rochberg, “Representation theorems for holomorphic and harmonic functions in $L^p$”, Representation theorems for Hardy spaces, Asterisque, 77, Soc. Math. France, Paris, 1980, 11–66 | MR
[4] P. L. Duren, “Extension of a theorem of Carleson”, Bull. Amer. Math. Soc., 75 (1969), 143–146 | DOI | MR | Zbl
[5] J. B. Garnett, Bounded analytic functions, Academic Press, New York–London, 1982 | MR
[6] D. Luecking, “Trace ideal criteria for Toeplitz operators”, J. Funct. Anal., 73:2 (1987), 345–368 | DOI | MR | Zbl
[7] D. Luecking, “Embedding derivatives of Hardy spaces into Lebesgue spaces”, Proc. London Math. Soc., 63:3 (1991), 595–619 | DOI | MR | Zbl
[8] D. Luecking, “Embedding theorems for spaces of analytic functions via Khinchine's inequality”, Michigan Math. J., 40:2 (1993), 333–358 | DOI | MR | Zbl
[9] R. Rochberg, “Decomposition theorems for Bergman spaces and their applications”, Operators and function theory (Lancaster, 1984), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 153, Reidel, Dordrecht, 1985, 225–277 | MR
[10] Z. Wu, “Area operator on Bergman spaces”, Science in China: Series A Mathematics, 49:7 (2006), 987–1008 | DOI | MR | Zbl
[11] Z. Wu, “Volterra operator, area integral and Carleson measures”, Sciences in China: Series A Mathematics, 54:11 (2011), 2487–2500 | DOI | MR | Zbl
[12] Z. Wu, “A new characterization for Carleson measures and some applications”, Integral Equations Operator Theory, 71:2 (2011), 161–180 | DOI | MR | Zbl
[13] Z. Wu, C. Xie, “$Q$ spaces and Morrey spaces”, J. Funct. Anal., 201:1 (2003), 282–297 | DOI | MR | Zbl
[14] J. Xiao, Holomorphic $Q$ classes, Lecture Notes in Mathematics, 1767, Springer-Verlag, Berlin, 2001 | DOI | MR | Zbl
[15] I. V. Videnskii, “On an analogue of Carleson measures”, Dokl. Akad. Nauk SSSR, 298 (1988), 1042–1047 | MR