Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2013_4_1_a6, author = {I. Sihwaningrum and Y. Sawano}, title = {Weak and strong type estimates for fractional integral operators on {Morrey} spaces over metric measure spaces}, journal = {Eurasian mathematical journal}, pages = {76--81}, publisher = {mathdoc}, volume = {4}, number = {1}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2013_4_1_a6/} }
TY - JOUR AU - I. Sihwaningrum AU - Y. Sawano TI - Weak and strong type estimates for fractional integral operators on Morrey spaces over metric measure spaces JO - Eurasian mathematical journal PY - 2013 SP - 76 EP - 81 VL - 4 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/EMJ_2013_4_1_a6/ LA - en ID - EMJ_2013_4_1_a6 ER -
%0 Journal Article %A I. Sihwaningrum %A Y. Sawano %T Weak and strong type estimates for fractional integral operators on Morrey spaces over metric measure spaces %J Eurasian mathematical journal %D 2013 %P 76-81 %V 4 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/EMJ_2013_4_1_a6/ %G en %F EMJ_2013_4_1_a6
I. Sihwaningrum; Y. Sawano. Weak and strong type estimates for fractional integral operators on Morrey spaces over metric measure spaces. Eurasian mathematical journal, Tome 4 (2013) no. 1, pp. 76-81. http://geodesic.mathdoc.fr/item/EMJ_2013_4_1_a6/
[1] D. Adams, “A note on Riesz potentials”, Duke Math. J., 42 (1975), 765–778 | DOI | MR | Zbl
[2] G. H. Hardy, J. E. Littlewood, “Some properties of fractional integrals, I”, Math. Zeit., 27 (1927), 565–606 | DOI | MR
[3] G. H. Hardy, J. E. Littlewood, “Some properties of fractional integrals, II”, Math. Zeit., 34 (1932), 403–439 | DOI | MR
[4] L. I. Hedberg, “On certain convolution inequalities”, Proc. Amer. Math. Soc., 36 (1972), 505–510 | DOI | MR
[5] G. Liu, L. Shu, “Boundedness for the commutator of fractional integral on generalized Morrey space in nonhomogenous space”, Anal. Theory Appl., 27 (2011), 51–58 | DOI | MR | Zbl
[6] E. Nakai, “Hardy–Littlewood maximal operator, singular integral operators, and the Riesz potentials on generalized Morrey spaces”, Math. Nachr., 166 (1994), 95–103 | DOI | MR | Zbl
[7] F. Nazarov, S. Treil, A. Volberg, “Weak type estimates and Cotlar inequalities for Calderon–Zygmund operators on non-homogeneous spaces”, Internat. Math. Res. Notices, 9 (1998), 463–487 | DOI | MR | Zbl
[8] Y. Sawano, “Sharp estimates of the modified Hardy–Littlewood maximal operator on the nonhomogeneous space via covering lemmas”, Hokkaido Math. J., 34 (2005), 435–458 | DOI | MR | Zbl
[9] Y. Sawano, T. Shimomura, “Sobolev embeddings for Riesz potentials of functions in non-doubling Morrey spaces of variable exponents”, Collectanea Mathematica (online)
[10] Amer. Math. Soc. Transl. ser. 2, 34 (1963), 39–68 | Zbl
[11] Y. Terasawa, “Outer measures and weak type (1,1) estimates of Hardy–Littlewood maximal operators”, J. Inequal. Appl., 2006, 15063, 13 pp. | MR | Zbl