Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2013_4_1_a5, author = {M. Krbec and H.-J. Schmeisser}, title = {On dimension-free integrability improvement for {Sobolev} embeddings}, journal = {Eurasian mathematical journal}, pages = {65--75}, publisher = {mathdoc}, volume = {4}, number = {1}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2013_4_1_a5/} }
M. Krbec; H.-J. Schmeisser. On dimension-free integrability improvement for Sobolev embeddings. Eurasian mathematical journal, Tome 4 (2013) no. 1, pp. 65-75. http://geodesic.mathdoc.fr/item/EMJ_2013_4_1_a5/
[1] D. Adams, “Traces of potentials arising from translation invariant operators”, Ann. Scuola Norm. Sup. Pisa, 25 (1971), 1–9 | MR
[2] R. A. Adams, “General logarithmic Sobolev inequalities and Orlicz embeddings”, J. Funct. Anal., 34 (1979), 292–303 | DOI | MR | Zbl
[3] R. A. Adams, F. H. Clarke, “Gross's logarithmic Sobolev inequality: A simple proof”, Amer. J. Math., 101 (1979), 1265–1269 | DOI | MR | Zbl
[4] A. Alvino, “Sulla diseguaglianza di Sobolev in spazi di Lorentz”, Boll. Un. Mat. Ital. (5), 14-A (1977), 148–156 | MR | Zbl
[5] W. Beckner, “Geometric asymptotics and the logarithmic Sobolev inequality”, Forum Math., 11 (1999), 105–137 | DOI | MR | Zbl
[6] C. Bennett, R. Sharpley, Interpolation of Operators, Academic Press, Boston, 1988 | MR
[7] H. Brézis, S. Wainger, “A note on limiting cases of Sobolev embeddings and convolution inequalities”, Comm. Part. Diff. Equations, 5 (1980), 773–789 | DOI | MR | Zbl
[8] F. Chiarenza, M. Frasca, “A remark on a paper by C. Fefferman”, Proc. Amer. Math. Soc., 108 (1990), 407–409 | MR | Zbl
[9] D. Cruz-Uribe, M. Krbec, “Localization and extrapolation in Lorentz–Orlicz spaces”: M. Cwikel et al., Function Spaces, Interpolation Theory and Related Topics, Proc. Conf. (Lund (Sweden), August 17–22, 2001), eds. A. Kufner, L. E. Persson, G. Sparr, M. Englis, de Gruyter, Berlin, 2002, 389–401 | MR
[10] M. Del Pino, J. Dolbeault, “The optimal Euclidean $L^p$-Sobolev logarithmic inequality”, J. Funct. Anal., 197 (2003), 151–161 | DOI | MR | Zbl
[11] C. Fefferman, “The uncertainty principle”, Bull. Amer. Math. Soc., 9 (1983), 129–206 | DOI | MR | Zbl
[12] J.-P. Gossez, A. Loulit, “A note on two notions of unique continuation”, Bull. Soc. Math. Belg. Ser. B, 45:3 (1993), 257–268 | MR | Zbl
[13] L. Gross, “Logarithmic Sobolev inequalities”, Amer. J. Math., 97 (1976), 1061–1083 | DOI | MR | Zbl
[14] J. Gunson, “Inequalities in Mathematical Physics”, Inequalities. Fifty years on from Hardy, Littlewood and Polya, Proc. Int. Conf. (Birmingham/UK 1987), Lect. Notes Pure Appl. Math., 129, 1991, 53–79 | MR | Zbl
[15] F. Güngör, J. Gunson, “A note on the proof by Adams and Clarke of Gross's logarithmic inequality”, Appl. Anal., 59 (1995), 201–206 | DOI | MR | Zbl
[16] J. Ishii, “On equivalence of modular function spaces”, Proc. Japan Acad. Sci., 35 (1959), 551–556 | DOI | MR | Zbl
[17] T. Iwaniec, A. Verde, “On the operator $\mathcal{L}(f)=f\log|f|$”, J. Funct. Analysis, 169 (1999), 391–420 | DOI | MR | Zbl
[18] R. Kerman, E. Sawyer, “The trace inequality and eigenvalue estimates for Schrödinger operators”, Ann. Inst. Fourier (Grenoble), 36 (1986), 207–228 | DOI | MR | Zbl
[19] M. A. Krasnosel'skii, Ya. B. Rutitskii, Convex functions and Orlicz spaces, Noordhoff, Amsterdam, 1961 | MR
[20] M. Krbec, H.-J. Schmeisser, “A limiting case of the uncertainty principle”, Proceedings of Equadiff 11, Proceedings of minisymposia and contributed talks (July 25–29, 2005, Bratislava), eds. M. Fila et al., Bratislava, 2007, 181–187 | MR
[21] M. Krbec, H.-J. Schmeisser, Dimension-invariant embeddings of Sobolev spaces, Preprint Math/Inf/01/10, Jena, 2010 | MR
[22] M. Krbec, H.-J. Schmeisser, “On dimension-free embeddings, I”, J. Math. Anal. Appl. (to appear) | DOI
[23] M. Krbec, H.-J. Schmeisser, “On dimension-free embeddings, II”, Rev. Mat. Complutense (to appear) | DOI
[24] M. Krbec, T. Schott, “Superposition of embeddings and Fefferman's inequality”, Boll. Un. Mat. Ital., Sez. B, Artic. Ric. Mat., 8:2 (1999), 629–637 | MR | Zbl
[25] E. H. Lieb, M. Loss, Analysis, Graduate Studies in Mathematics, 14, second edition, Amer. Math. Soc., Providence, R.I., 2001 | MR | Zbl
[26] J. Martín, M. Milman, “Isoperimetry and symmetrization for logarithmic Sobolev inequalities”, J. Funct. Anal., 256 (2009), 149–178 | DOI | MR | Zbl
[27] J. Martín, M. Milman, Pointwise symmetrization inequalities for Sobolev functions and applications, 13 Aug. 2009, arXiv: 0908.1751v2[math.FA] | MR
[28] V. G. Maz'ya, “Classes of domains and embedding theorems for functional spaces”, Dokl. Akad. Nauk SSSR, 133 (1960), 527–530 | MR | Zbl
[29] V. G. Maz'ya, “On the theory of the $n$-dimensional Schrödinger operator”, Izv. Akad. Nauk SSSR, ser. Matem., 28 (1964), 1145–1172 | MR | Zbl
[30] M. Milman, Extrapolation and optimal decompositions, Springer-Verlag, Berlin, 1994 | MR | Zbl
[31] J. Musielak, Orlicz Spaces and Modular Spaces, Lecture Notes in Math., 1034, Springer-Verlag, Berlin, 1983 | MR | Zbl
[32] E. T. Sawyer, “A characterization of two weight norm inequalities for fractional and Poisson integrals”, Trans. Amer. Math. Soc., 308 (1988), 533–545 | DOI | MR | Zbl
[33] H.-J. Schmeisser, W. Sickel, Traces, Gagliardo–Nirenberg inequalities and Sobolev type embeddings for vector-valued function spaces, Jenaer Schriften zur Mathematik und Informatik, Math/Inf/24/01, Jena, 2001
[34] G. Talenti, “Best constant in Sobolev inequality”, Ann. Mat. Pura Appl., 110 (1976), 353–372 | DOI | MR | Zbl
[35] H. Triebel, Function Spaces and Wavelets on Domains, EMS Tracts in Mathematics, 7, EMS, Zürich, 2008 | MR | Zbl
[36] H. Triebel, “Tractable embeddings of Besov spaces into Zygmund spaces”, Banach Center Publications (to appear)