Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2013_4_1_a4, author = {A. Gogatishvili and R. Ch. Mustafayev}, title = {New characterization of {Morrey} spaces}, journal = {Eurasian mathematical journal}, pages = {54--64}, publisher = {mathdoc}, volume = {4}, number = {1}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2013_4_1_a4/} }
A. Gogatishvili; R. Ch. Mustafayev. New characterization of Morrey spaces. Eurasian mathematical journal, Tome 4 (2013) no. 1, pp. 54-64. http://geodesic.mathdoc.fr/item/EMJ_2013_4_1_a4/
[1] D. R. Adams, Lectures on $L^p$-Potential Theory, Umea Univ. Report No 2, 1981, 74 pp.
[2] V. I. Burenkov, “Recent progress in studying the boundedness of classical operators of real analysis in general Morrey-type spaces, I”, Eurasian Math. J., 3:3 (2012), 11–32 | MR | Zbl
[3] V. I. Burenkov, “Recent progress in studying the boundedness of classical operators of real analysis in general Morrey-type spaces, II”, Eurasian Math. J., 4:1 (2013), 21–45 | Zbl
[4] V. I. Burenkov, H. V. Guliyev, “Necessary and sufficient conditions for boundedness of the maximal operator in local Morrey-type spaces”, Studia Math., 163:2 (2004), 157–176 | DOI | MR | Zbl
[5] V. I. Burenkov, H. V. Guliyev, V. S. Guliyev, “On boundedness of the fractional maximal operator from complementary Morrey-type spaces to Morrey-type spaces”, The interaction of analysis and geometry, Contemp. Math., 424, Amer. Math. Soc., Providence, RI, 2007, 17–32 | DOI | MR | Zbl
[6] A. Gogatishvili, R. Ch. Mustafayev, “Dual spaces of local Morrey-type spaces”, Czechoslovak Math. J., 61(136):3 (2011), 609–622 | DOI | MR | Zbl
[7] C. B. Morrey, Jr., “On the solutions of quasi-linear elliptic partial differential equations”, Trans. Amer. Math. Soc., 43:1 (1938), 126–166 | DOI | MR
[8] H. L. Royden, Real analysis, 3rd ed., Macmillan Publishing Company, New York, 1988 | MR | Zbl