New characterization of Morrey spaces
Eurasian mathematical journal, Tome 4 (2013) no. 1, pp. 54-64.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we prove that the norm of the Morrey space $\mathcal{M}_{p,\lambda}$ is equivalent to $$ \sup\left\{\int_{\mathbb{R}^n}|fg|: \inf_{x\in\mathbb{R}^n}\int_0^\infty r^{\frac{n-\lambda}p-1}||g||_{L_{p'}(^\complement B(x,r))}dr\leqslant1\right\}. $$
@article{EMJ_2013_4_1_a4,
     author = {A. Gogatishvili and R. Ch. Mustafayev},
     title = {New characterization of {Morrey} spaces},
     journal = {Eurasian mathematical journal},
     pages = {54--64},
     publisher = {mathdoc},
     volume = {4},
     number = {1},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2013_4_1_a4/}
}
TY  - JOUR
AU  - A. Gogatishvili
AU  - R. Ch. Mustafayev
TI  - New characterization of Morrey spaces
JO  - Eurasian mathematical journal
PY  - 2013
SP  - 54
EP  - 64
VL  - 4
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2013_4_1_a4/
LA  - en
ID  - EMJ_2013_4_1_a4
ER  - 
%0 Journal Article
%A A. Gogatishvili
%A R. Ch. Mustafayev
%T New characterization of Morrey spaces
%J Eurasian mathematical journal
%D 2013
%P 54-64
%V 4
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2013_4_1_a4/
%G en
%F EMJ_2013_4_1_a4
A. Gogatishvili; R. Ch. Mustafayev. New characterization of Morrey spaces. Eurasian mathematical journal, Tome 4 (2013) no. 1, pp. 54-64. http://geodesic.mathdoc.fr/item/EMJ_2013_4_1_a4/

[1] D. R. Adams, Lectures on $L^p$-Potential Theory, Umea Univ. Report No 2, 1981, 74 pp.

[2] V. I. Burenkov, “Recent progress in studying the boundedness of classical operators of real analysis in general Morrey-type spaces, I”, Eurasian Math. J., 3:3 (2012), 11–32 | MR | Zbl

[3] V. I. Burenkov, “Recent progress in studying the boundedness of classical operators of real analysis in general Morrey-type spaces, II”, Eurasian Math. J., 4:1 (2013), 21–45 | Zbl

[4] V. I. Burenkov, H. V. Guliyev, “Necessary and sufficient conditions for boundedness of the maximal operator in local Morrey-type spaces”, Studia Math., 163:2 (2004), 157–176 | DOI | MR | Zbl

[5] V. I. Burenkov, H. V. Guliyev, V. S. Guliyev, “On boundedness of the fractional maximal operator from complementary Morrey-type spaces to Morrey-type spaces”, The interaction of analysis and geometry, Contemp. Math., 424, Amer. Math. Soc., Providence, RI, 2007, 17–32 | DOI | MR | Zbl

[6] A. Gogatishvili, R. Ch. Mustafayev, “Dual spaces of local Morrey-type spaces”, Czechoslovak Math. J., 61(136):3 (2011), 609–622 | DOI | MR | Zbl

[7] C. B. Morrey, Jr., “On the solutions of quasi-linear elliptic partial differential equations”, Trans. Amer. Math. Soc., 43:1 (1938), 126–166 | DOI | MR

[8] H. L. Royden, Real analysis, 3rd ed., Macmillan Publishing Company, New York, 1988 | MR | Zbl