New characterization of Morrey spaces
Eurasian mathematical journal, Tome 4 (2013) no. 1, pp. 54-64
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we prove that the norm of the Morrey space $\mathcal{M}_{p,\lambda}$ is equivalent to
$$
\sup\left\{\int_{\mathbb{R}^n}|fg|: \inf_{x\in\mathbb{R}^n}\int_0^\infty r^{\frac{n-\lambda}p-1}||g||_{L_{p'}(^\complement B(x,r))}dr\leqslant1\right\}.
$$
@article{EMJ_2013_4_1_a4,
author = {A. Gogatishvili and R. Ch. Mustafayev},
title = {New characterization of {Morrey} spaces},
journal = {Eurasian mathematical journal},
pages = {54--64},
publisher = {mathdoc},
volume = {4},
number = {1},
year = {2013},
language = {en},
url = {http://geodesic.mathdoc.fr/item/EMJ_2013_4_1_a4/}
}
A. Gogatishvili; R. Ch. Mustafayev. New characterization of Morrey spaces. Eurasian mathematical journal, Tome 4 (2013) no. 1, pp. 54-64. http://geodesic.mathdoc.fr/item/EMJ_2013_4_1_a4/