Recent progress in studying the boundedness of classical operators of real analysis in general Morrey-type spaces.~II
Eurasian mathematical journal, Tome 4 (2013) no. 1, pp. 21-45.

Voir la notice de l'article provenant de la source Math-Net.Ru

The survey is aimed at providing detailed information about recent results in the problem of the boundedness in general Morrey-type spaces of various important operators of real analysis, namely of the maximal operator, fractional maximal operator, Riesz potential, singular integral operator, Hardy operator. The main focus is on the results which contain, for a certain range of the numerical parameters, necessary and sufficient conditions on the functional parameters characterizing general Morrey-type spaces, ensuring the boundedness of the aforementioned operators from one general Morrey-type space to another one. The major part of the survey is dedicated to the results obtained by the author jointly with his co-authores A. Gogatishvili, M. L. Goldman, D. K. Darbayeva, H. V. Guliyev, V. S. Guliyev, P. Jain, R. Mustafaev, E. D. Nursultanov, R. Oinarov, A. Serbetci, T. V. Tararykova. In Part I of the survey under discussion were the definition and basic properties of the local and global general Morrey-type spaces, embedding theorems, and the boundedness properties of the maximal operator. Part II of the survey contains discussion of boundedness properties of the fractional maximal operator, Riesz potential, singular integral operator, Hardy operator. All definitions and notation in Part II are the same as in Part I.
@article{EMJ_2013_4_1_a2,
     author = {V. I. Burenkov},
     title = {Recent progress in studying the boundedness of classical operators of real analysis in general {Morrey-type} {spaces.~II}},
     journal = {Eurasian mathematical journal},
     pages = {21--45},
     publisher = {mathdoc},
     volume = {4},
     number = {1},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2013_4_1_a2/}
}
TY  - JOUR
AU  - V. I. Burenkov
TI  - Recent progress in studying the boundedness of classical operators of real analysis in general Morrey-type spaces.~II
JO  - Eurasian mathematical journal
PY  - 2013
SP  - 21
EP  - 45
VL  - 4
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2013_4_1_a2/
LA  - en
ID  - EMJ_2013_4_1_a2
ER  - 
%0 Journal Article
%A V. I. Burenkov
%T Recent progress in studying the boundedness of classical operators of real analysis in general Morrey-type spaces.~II
%J Eurasian mathematical journal
%D 2013
%P 21-45
%V 4
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2013_4_1_a2/
%G en
%F EMJ_2013_4_1_a2
V. I. Burenkov. Recent progress in studying the boundedness of classical operators of real analysis in general Morrey-type spaces.~II. Eurasian mathematical journal, Tome 4 (2013) no. 1, pp. 21-45. http://geodesic.mathdoc.fr/item/EMJ_2013_4_1_a2/

[1] D. R. Adams, “A note on Riesz potentials”, Duke Math., 42 (1975), 765–778 | DOI | MR | Zbl

[2] D. R. Adams, Lectures on $L^p$-Potential Theory, Umea Univ. Report No 2, 1981, 74 pp.

[3] A. Akbulut, V. S. Guliyev, Sh. A. Muradova, “On the boundedness of the anisotropic fractional maximal operator from anisotropic complementary Morrey-type spaces to anisotropic Morrey-type spaces”, Eurasian Math. J., 4:1 (2013), 7–20 | MR | Zbl

[4] A. Akbulut, I. Ekincioglu, A. Serbetci, T. Tararykova, “Boundedness of the anisotropic fractional maximal operator in anisotropic local Morrey-type spaces”, Eurasian Math. J., 2:2 (2011), 5–30 | MR | Zbl

[5] O. V. Besov, V. P. Il'in, P. I. Lizorkin, “The $L_p$-estimates of a certain class of non-isotropically singular integrals”, Dokl. Akad. Nauk SSSR, 169 (1966), 1250–1253 (in Russian) | MR | Zbl

[6] M. Bramanti, M. C. Cerutti, “Commutators of singular integrals on homogeneous spaces”, Boll. Un. Mat. Ital. B, 10:7 (1996), 843–883 | MR | Zbl

[7] V. I. Burenkov, Sobolev spaces on domains, B. G. Teubner, Stuttgart–Leipzig, 1998, 312 pp. | MR | Zbl

[8] V. I. Burenkov, “Recent progress in studying the boundedness of classical operators of real analysis in general Morrey-type spaces, I”, Eurasian Mathematical Journal, 3:3 (2012), 11–32 | MR | Zbl

[9] V. I. Burenkov, D. K. Darbayeva, E. D. Nursultanov, “Description of interpolation spaces for general local Morrey-type spaces”, Eurasian Mathematical Journal, 4:1 (2013), 46–53 | Zbl

[10] V. I. Burenkov, A. Gogatishvili, V. S. Guliyev, R. Mustafaev, “Boundedness of the fractional maximal operator in local Morrey-type spaces”, Complex Analysis and Elliptic Equations, 55:8–10 (2010), 739–758 | DOI | MR | Zbl

[11] V. I. Burenkov, A. Gogatishvili, V. S. Guliyev, R. Mustafaev, “Boundedness of the Riesz potential in local Morrey-type spaces”, Potential analysis, 35:1 (2011), 67–87 | DOI | MR | Zbl

[12] Acad. Sci. Dokl. Math., 74 (2006) | MR | Zbl

[13] V. I. Burenkov, H. V. Guliyev, V. S. Guliyev, “Necessary and sufficient conditions for boundedness of the fractional maximal operator in the local Morrey-type spaces”, Journal of Computational and Applied Mathematics, 208:1 (2007), 280–301 | DOI | MR | Zbl

[14] V. I. Burenkov, H. V. Guliyev, V. S. Guliyev, “On boundedness of the fractional maximal operator from complementary Morrey-type spaces to Morrey-type spaces”, The Interaction of Analysis and Geometry, Contemporary Math., 424, American Mathematical Society, 2007, 17–32 | DOI | MR | Zbl

[15] Acad. Sci. Dokl. Math., 76 (2007) | MR

[16] V. I. Burenkov, V. S. Guliyev, “Necessary and sufficient conditions for boundedness of the Riesz potential in the local Morrey-type spaces”, Potential Anal., 30:3 (2009), 211–249 | DOI | MR | Zbl

[17] Acad. Sci. Dokl. Math., 78:2 (2008), 651–654 | DOI | MR | Zbl

[18] V. I. Burenkov, V. S. Guliyev, A. Serbetci, T. V. Tararykova, “Necessary and sufficient conditions for boundedness of the genuine singular integral operators in the local Morrey-type spaces”, Eurasian Math. J., 1:1 (2010), 32–53 | MR | Zbl

[19] V. I. Burenkov, P. Jain, T. V. Tararykova, “On boundedness of the Hardy operator in Morrey-type spaces”, Eurasian Math. J., 2:1 (2011), 52–80 | MR | Zbl

[20] Proceedings Steklov Inst. Math., 269, 2010, 46–56 | DOI | MR | Zbl

[21] V. I. Burenkov, R. Oinarov, “Necessary and sufficient conditions for the boundedness of the Hardy-type operator from a weighted Lebesgue space to a Morrey-type space”, Mathematical Inequalities and Applications, 16:1 (2013), 1–19 | DOI | Zbl

[22] R. Coifman, Y. Meyer, Au delà des opérateurs pseudo-différentiels, Astérisque, 57, Société Mathématique de France, Paris, 1978, 185 pp. | MR

[23] F. Chiarenza, M. Frasca, “Morrey spaces and Hardy-Littlewood maximal function”, Rend. Math., 7 (1987), 273–279 | MR | Zbl

[24] R. Coifman, Y. Meyer, “Au dela des operateurs pseudo-differentiels”, Asterisque, 57, 1979 | MR

[25] D. Cruz-Uribe, A. Fiorenza, “Endpoint estimates and weighted norm inequalities for commutators of fractional integrals”, Publ. Mat., 47:1 (2003), 103–131 | DOI | MR | Zbl

[26] D. Cruz-Uribe, C. Perez, “Sharp two-weight, weak-type norm inequalities for singular integral operators”, Math. Res. Let., 6 (1999), 417–428 | DOI | MR

[27] E. B. Fabes, N. Riv`ere, “Singular integrals with mixed homogeneity”, Studia Math., 27 (1966), 19–38 | MR | Zbl

[28] I. Genebashvili, A. Gogatishvili, V. Kokilashvili, M. Krbec, Weight theory for integral transforms on spaces of homogeneous type, Pitman Monographs and Surveys in Pure and Applied Mathematics, 92, Longman, 1998 | MR | Zbl

[29] A. Gogatishvili, R. Mustafaev, “New characterization of Morrey space”, Eurasian Math. J., 4:1 (2013), 54–64 | Zbl

[30] V. S. Guliyev, Integral operators on function spaces on the homogeneous groups and on domains in $\mathbb{R}^n$, DSci dissertation, Mat. Inst. Steklov, Moscow, 1994, 329 pp. (in Russian)

[31] V. S. Guliyev, Function spaces, integral operators and two weighted inequalities on homogeneous groups. Some applications, Baku, 1999, 332 pp. (in Russian) | Zbl

[32] V. S. Guliyev, “General weighted Morrey spaces and higher order commutators of sublinear operators”, Eurasian Math. J., 3:3 (2012), 33–61 | MR | Zbl

[33] V. S. Guliyev, R. Ch. Mustafayev, “Integral operators of potential type in spaces of homogeneous type”, Doklady Ross. Akad. Nauk, 354:6 (1997), 730–732 (in Russian) | MR

[34] V. S. Guliyev, R. Ch. Mustafayev, “Fractional integrals in spaces of functions defined on spaces of homogeneous type”, Anal. Math., 24:3 (1998), 181–200 (in Russian) | DOI | MR

[35] H. Gunawan, I. Sihwaningrum, “Fractional integral operators on Lebesgue and Morrey spaces”, Proceedings of the IndoMS International Conference on Mathematics and its Applications (Yogyakarta, Indonesia, 2009)

[36] P. G. Lemarié-Rieusset, “The role of Morrey spaces in the study of Navier–Stokes and Euler equations”, Eurasian Mathematical Journal, 3:3 (2012), 62–93 | MR | Zbl

[37] V. G. Maz'ya, Sobolev Spaces, Springer Verlag, Berlin, 1985 | MR | Zbl

[38] T. Mizuhara, “Boundedness of some classical operators on generalized Morrey spaces”, Harmonic Analisis, ICM 90 Satellite Proceedings, ed. S. Igari, Springer-Verlag, Tokyo, 1991, 183–189 | MR

[39] C. B. Morrey, “On the solutions of quasi-linear elliptic partial differential equations”, Trans. Amer. Math. Soc., 43 (1938), 126–166 | DOI | MR

[40] E. Nakai, “Hardy–Littlewood maximal operator, singular integral operators and Riesz potentials on generalized Morrey spaces”, Math. Nachr., 166 (1994), 95–103 | DOI | MR | Zbl

[41] E. Nakai, “Recent topics of fractional integrals”, Sugaku Expositions, 20:2 (2007), 215–235 | MR | Zbl

[42] J. Peetre, “On convolution operators leaving $\mathcal{L}^{p,\lambda}$ spaces invariant”, Ann. Mat. Pura e Appl. (IV), 72 (1966), 295–304 | DOI | MR | Zbl

[43] J. Peetre, “On the theory of $\mathcal{L}^{p,\lambda}$ spaces”, Journal Funct. Analysis, 4 (1969), 71–87 | DOI | MR | Zbl

[44] M. A. Ragusa, “Partial differential equations involving Morrey spaces as initial conditions”, Eurasian Math. J., 3:3 (2012), 94–109 | MR | Zbl

[45] E. Sawyer, “Two weight norm inequalities for certain maximal and integral operators”, Harmonic analysis (Minneapolis, Minn., 1981), Lecture Notes in Math., 908, 1982, 102–127 | DOI | MR | Zbl

[46] W. Sickel, “Some generalizations of the spaces $F_{\infty,q}^s$ and relations to Lizorkin–Triebel spaces built on Morrey spaces, I”, Eurasian Math. J., 3:3 (2012), 110–149 | MR | Zbl

[47] W. Sickel,, “Some generalizations of the spaces $F_{\infty,q}^s$ and relations to Lizorkin–Triebel spaces built on Morrey spaces, II”, Eurasian Math. J., 4:1 (2013), 82–124 | MR | Zbl

[48] E. M. Stein, Harmonic analysis: Real variable methods, orthogonality, and oscillatory integrals, Princeton Univ. Press, Princeton, NJ, 1993 | MR | Zbl

[49] G. Talenti, “Asservazioni sopra una classe di disuguaglianze”, Rend. Semin. Mat. e Fis., Milano, 39 (1969), 171–185 | DOI | MR | Zbl

[50] T. V. Tararykova, “Comments on definitions of general local and global Morrey-type spaces”, Eurasian Math. J., 4:1 (2013), 125–134 | Zbl

[51] G. Tomaselli, “A class of inequalities”, Bull. Unione Mat. Ital., 2:6 (1969), 622–631 | MR | Zbl