Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2013_4_1_a2, author = {V. I. Burenkov}, title = {Recent progress in studying the boundedness of classical operators of real analysis in general {Morrey-type} {spaces.~II}}, journal = {Eurasian mathematical journal}, pages = {21--45}, publisher = {mathdoc}, volume = {4}, number = {1}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2013_4_1_a2/} }
TY - JOUR AU - V. I. Burenkov TI - Recent progress in studying the boundedness of classical operators of real analysis in general Morrey-type spaces.~II JO - Eurasian mathematical journal PY - 2013 SP - 21 EP - 45 VL - 4 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/EMJ_2013_4_1_a2/ LA - en ID - EMJ_2013_4_1_a2 ER -
%0 Journal Article %A V. I. Burenkov %T Recent progress in studying the boundedness of classical operators of real analysis in general Morrey-type spaces.~II %J Eurasian mathematical journal %D 2013 %P 21-45 %V 4 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/EMJ_2013_4_1_a2/ %G en %F EMJ_2013_4_1_a2
V. I. Burenkov. Recent progress in studying the boundedness of classical operators of real analysis in general Morrey-type spaces.~II. Eurasian mathematical journal, Tome 4 (2013) no. 1, pp. 21-45. http://geodesic.mathdoc.fr/item/EMJ_2013_4_1_a2/
[1] D. R. Adams, “A note on Riesz potentials”, Duke Math., 42 (1975), 765–778 | DOI | MR | Zbl
[2] D. R. Adams, Lectures on $L^p$-Potential Theory, Umea Univ. Report No 2, 1981, 74 pp.
[3] A. Akbulut, V. S. Guliyev, Sh. A. Muradova, “On the boundedness of the anisotropic fractional maximal operator from anisotropic complementary Morrey-type spaces to anisotropic Morrey-type spaces”, Eurasian Math. J., 4:1 (2013), 7–20 | MR | Zbl
[4] A. Akbulut, I. Ekincioglu, A. Serbetci, T. Tararykova, “Boundedness of the anisotropic fractional maximal operator in anisotropic local Morrey-type spaces”, Eurasian Math. J., 2:2 (2011), 5–30 | MR | Zbl
[5] O. V. Besov, V. P. Il'in, P. I. Lizorkin, “The $L_p$-estimates of a certain class of non-isotropically singular integrals”, Dokl. Akad. Nauk SSSR, 169 (1966), 1250–1253 (in Russian) | MR | Zbl
[6] M. Bramanti, M. C. Cerutti, “Commutators of singular integrals on homogeneous spaces”, Boll. Un. Mat. Ital. B, 10:7 (1996), 843–883 | MR | Zbl
[7] V. I. Burenkov, Sobolev spaces on domains, B. G. Teubner, Stuttgart–Leipzig, 1998, 312 pp. | MR | Zbl
[8] V. I. Burenkov, “Recent progress in studying the boundedness of classical operators of real analysis in general Morrey-type spaces, I”, Eurasian Mathematical Journal, 3:3 (2012), 11–32 | MR | Zbl
[9] V. I. Burenkov, D. K. Darbayeva, E. D. Nursultanov, “Description of interpolation spaces for general local Morrey-type spaces”, Eurasian Mathematical Journal, 4:1 (2013), 46–53 | Zbl
[10] V. I. Burenkov, A. Gogatishvili, V. S. Guliyev, R. Mustafaev, “Boundedness of the fractional maximal operator in local Morrey-type spaces”, Complex Analysis and Elliptic Equations, 55:8–10 (2010), 739–758 | DOI | MR | Zbl
[11] V. I. Burenkov, A. Gogatishvili, V. S. Guliyev, R. Mustafaev, “Boundedness of the Riesz potential in local Morrey-type spaces”, Potential analysis, 35:1 (2011), 67–87 | DOI | MR | Zbl
[12] Acad. Sci. Dokl. Math., 74 (2006) | MR | Zbl
[13] V. I. Burenkov, H. V. Guliyev, V. S. Guliyev, “Necessary and sufficient conditions for boundedness of the fractional maximal operator in the local Morrey-type spaces”, Journal of Computational and Applied Mathematics, 208:1 (2007), 280–301 | DOI | MR | Zbl
[14] V. I. Burenkov, H. V. Guliyev, V. S. Guliyev, “On boundedness of the fractional maximal operator from complementary Morrey-type spaces to Morrey-type spaces”, The Interaction of Analysis and Geometry, Contemporary Math., 424, American Mathematical Society, 2007, 17–32 | DOI | MR | Zbl
[15] Acad. Sci. Dokl. Math., 76 (2007) | MR
[16] V. I. Burenkov, V. S. Guliyev, “Necessary and sufficient conditions for boundedness of the Riesz potential in the local Morrey-type spaces”, Potential Anal., 30:3 (2009), 211–249 | DOI | MR | Zbl
[17] Acad. Sci. Dokl. Math., 78:2 (2008), 651–654 | DOI | MR | Zbl
[18] V. I. Burenkov, V. S. Guliyev, A. Serbetci, T. V. Tararykova, “Necessary and sufficient conditions for boundedness of the genuine singular integral operators in the local Morrey-type spaces”, Eurasian Math. J., 1:1 (2010), 32–53 | MR | Zbl
[19] V. I. Burenkov, P. Jain, T. V. Tararykova, “On boundedness of the Hardy operator in Morrey-type spaces”, Eurasian Math. J., 2:1 (2011), 52–80 | MR | Zbl
[20] Proceedings Steklov Inst. Math., 269, 2010, 46–56 | DOI | MR | Zbl
[21] V. I. Burenkov, R. Oinarov, “Necessary and sufficient conditions for the boundedness of the Hardy-type operator from a weighted Lebesgue space to a Morrey-type space”, Mathematical Inequalities and Applications, 16:1 (2013), 1–19 | DOI | Zbl
[22] R. Coifman, Y. Meyer, Au delà des opérateurs pseudo-différentiels, Astérisque, 57, Société Mathématique de France, Paris, 1978, 185 pp. | MR
[23] F. Chiarenza, M. Frasca, “Morrey spaces and Hardy-Littlewood maximal function”, Rend. Math., 7 (1987), 273–279 | MR | Zbl
[24] R. Coifman, Y. Meyer, “Au dela des operateurs pseudo-differentiels”, Asterisque, 57, 1979 | MR
[25] D. Cruz-Uribe, A. Fiorenza, “Endpoint estimates and weighted norm inequalities for commutators of fractional integrals”, Publ. Mat., 47:1 (2003), 103–131 | DOI | MR | Zbl
[26] D. Cruz-Uribe, C. Perez, “Sharp two-weight, weak-type norm inequalities for singular integral operators”, Math. Res. Let., 6 (1999), 417–428 | DOI | MR
[27] E. B. Fabes, N. Riv`ere, “Singular integrals with mixed homogeneity”, Studia Math., 27 (1966), 19–38 | MR | Zbl
[28] I. Genebashvili, A. Gogatishvili, V. Kokilashvili, M. Krbec, Weight theory for integral transforms on spaces of homogeneous type, Pitman Monographs and Surveys in Pure and Applied Mathematics, 92, Longman, 1998 | MR | Zbl
[29] A. Gogatishvili, R. Mustafaev, “New characterization of Morrey space”, Eurasian Math. J., 4:1 (2013), 54–64 | Zbl
[30] V. S. Guliyev, Integral operators on function spaces on the homogeneous groups and on domains in $\mathbb{R}^n$, DSci dissertation, Mat. Inst. Steklov, Moscow, 1994, 329 pp. (in Russian)
[31] V. S. Guliyev, Function spaces, integral operators and two weighted inequalities on homogeneous groups. Some applications, Baku, 1999, 332 pp. (in Russian) | Zbl
[32] V. S. Guliyev, “General weighted Morrey spaces and higher order commutators of sublinear operators”, Eurasian Math. J., 3:3 (2012), 33–61 | MR | Zbl
[33] V. S. Guliyev, R. Ch. Mustafayev, “Integral operators of potential type in spaces of homogeneous type”, Doklady Ross. Akad. Nauk, 354:6 (1997), 730–732 (in Russian) | MR
[34] V. S. Guliyev, R. Ch. Mustafayev, “Fractional integrals in spaces of functions defined on spaces of homogeneous type”, Anal. Math., 24:3 (1998), 181–200 (in Russian) | DOI | MR
[35] H. Gunawan, I. Sihwaningrum, “Fractional integral operators on Lebesgue and Morrey spaces”, Proceedings of the IndoMS International Conference on Mathematics and its Applications (Yogyakarta, Indonesia, 2009)
[36] P. G. Lemarié-Rieusset, “The role of Morrey spaces in the study of Navier–Stokes and Euler equations”, Eurasian Mathematical Journal, 3:3 (2012), 62–93 | MR | Zbl
[37] V. G. Maz'ya, Sobolev Spaces, Springer Verlag, Berlin, 1985 | MR | Zbl
[38] T. Mizuhara, “Boundedness of some classical operators on generalized Morrey spaces”, Harmonic Analisis, ICM 90 Satellite Proceedings, ed. S. Igari, Springer-Verlag, Tokyo, 1991, 183–189 | MR
[39] C. B. Morrey, “On the solutions of quasi-linear elliptic partial differential equations”, Trans. Amer. Math. Soc., 43 (1938), 126–166 | DOI | MR
[40] E. Nakai, “Hardy–Littlewood maximal operator, singular integral operators and Riesz potentials on generalized Morrey spaces”, Math. Nachr., 166 (1994), 95–103 | DOI | MR | Zbl
[41] E. Nakai, “Recent topics of fractional integrals”, Sugaku Expositions, 20:2 (2007), 215–235 | MR | Zbl
[42] J. Peetre, “On convolution operators leaving $\mathcal{L}^{p,\lambda}$ spaces invariant”, Ann. Mat. Pura e Appl. (IV), 72 (1966), 295–304 | DOI | MR | Zbl
[43] J. Peetre, “On the theory of $\mathcal{L}^{p,\lambda}$ spaces”, Journal Funct. Analysis, 4 (1969), 71–87 | DOI | MR | Zbl
[44] M. A. Ragusa, “Partial differential equations involving Morrey spaces as initial conditions”, Eurasian Math. J., 3:3 (2012), 94–109 | MR | Zbl
[45] E. Sawyer, “Two weight norm inequalities for certain maximal and integral operators”, Harmonic analysis (Minneapolis, Minn., 1981), Lecture Notes in Math., 908, 1982, 102–127 | DOI | MR | Zbl
[46] W. Sickel, “Some generalizations of the spaces $F_{\infty,q}^s$ and relations to Lizorkin–Triebel spaces built on Morrey spaces, I”, Eurasian Math. J., 3:3 (2012), 110–149 | MR | Zbl
[47] W. Sickel,, “Some generalizations of the spaces $F_{\infty,q}^s$ and relations to Lizorkin–Triebel spaces built on Morrey spaces, II”, Eurasian Math. J., 4:1 (2013), 82–124 | MR | Zbl
[48] E. M. Stein, Harmonic analysis: Real variable methods, orthogonality, and oscillatory integrals, Princeton Univ. Press, Princeton, NJ, 1993 | MR | Zbl
[49] G. Talenti, “Asservazioni sopra una classe di disuguaglianze”, Rend. Semin. Mat. e Fis., Milano, 39 (1969), 171–185 | DOI | MR | Zbl
[50] T. V. Tararykova, “Comments on definitions of general local and global Morrey-type spaces”, Eurasian Math. J., 4:1 (2013), 125–134 | Zbl
[51] G. Tomaselli, “A class of inequalities”, Bull. Unione Mat. Ital., 2:6 (1969), 622–631 | MR | Zbl