Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2012_3_4_a7, author = {M. S. Salakhitdinov and A. Hasanov}, title = {The {Dirichlet} problem for the generalized bi-axially symmetric {Helmholtz} equation}, journal = {Eurasian mathematical journal}, pages = {99--110}, publisher = {mathdoc}, volume = {3}, number = {4}, year = {2012}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2012_3_4_a7/} }
TY - JOUR AU - M. S. Salakhitdinov AU - A. Hasanov TI - The Dirichlet problem for the generalized bi-axially symmetric Helmholtz equation JO - Eurasian mathematical journal PY - 2012 SP - 99 EP - 110 VL - 3 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/EMJ_2012_3_4_a7/ LA - en ID - EMJ_2012_3_4_a7 ER -
M. S. Salakhitdinov; A. Hasanov. The Dirichlet problem for the generalized bi-axially symmetric Helmholtz equation. Eurasian mathematical journal, Tome 3 (2012) no. 4, pp. 99-110. http://geodesic.mathdoc.fr/item/EMJ_2012_3_4_a7/
[1] A. Altin, “Solutions of type $r^m$ for a class of singular equations”, International Journal of Mathematical Science, 5:3 (1982), 613–619 | DOI | MR | Zbl
[2] A. Altin, “Some expansion formulas for a class of singular partial differential equations”, Proceedings of American Mathematical Society, 85:1 (1982), 42–46 | DOI | MR | Zbl
[3] A. Altin, Y. Eutiquio, “Some properties of solutions of a class of singular partial differential equations”, Bulletin of the Institute of Mathematics Academic Sinica, 11:1 (1983), 81–87 | MR | Zbl
[4] P. Appell, J. Kampe de Feriet, Fonctions Hypergeometriques et Hyperspheriques; Polynomes d'Hermite, Gauthier-Villars, Paris, 1926 | Zbl
[5] A. Erdelyi, “Singularities of generalized axially symmetric potentials”, Comm. Pure Appl. Math., 2 (1956), 403–414 | DOI | MR
[6] A. Erdelyi, “An application of fractional integrals”, J. Analyse. Math., 14 (1965), 113–126 | DOI | MR | Zbl
[7] A. Erdelyi, W. Magnus, F. Oberhettinger, F. G. Tricomi, Higher transcendental functions, v. I, Izdat. Nauka, Moscow, 1973 (in Russian)
[8] A. J. Fryant, “Growth and complete sequences of generalized bi-axially symmetric potentials”, Journal of Differential Equations, 31:2 (1979), 155–164 | DOI | MR | Zbl
[9] R. Gilbert, “On the singularities of generalized axially symmetric potentials”, Arch. Rational Mech. Anal., 6 (1960), 171–176 | DOI | MR | Zbl
[10] R. Gilbert, “Some properties of generalized axially symmetric potentials”, Amer. J. Math., 84 (1962), 475–484 | DOI | MR | Zbl
[11] R. Gilbert, “ ‘Bergman’s' integral operator method in generalized axially symmetric potential theory”, J. Mathematical Phys., 5 (1964), 983–987 | DOI | MR
[12] R. Gilbert, “On the location of singularities of a class of elliptic partial differential equations in four variables”, Canad. J. Math., 17 (1965), 676–686 | DOI | MR | Zbl
[13] R. Gilbert, H. Howard, “On solutions of the generalized axially symmetric wave equation represented by Bergman operators”, Proc. London Math. Soc., 15:2 (1965), 346–360 | DOI | MR | Zbl
[14] R. Gilbert, “On the analytic properties of solutions to a generalized axially symmetric Schroedinger equations”, J. Differential equations, 3 (1967), 59–77 | DOI | MR | Zbl
[15] R. Gilbert, “An investigation of the analytic properties of solutions to the generalized axially symmetric, reduced wave equation in $n+1$ variables, with an application to the theory of potential scattering”, SIAM J. Appl. Math., 16:1 (1968), 30–50 | DOI | MR | Zbl
[16] R. Gilbert, Function Theoretic Methods in Partial Differential Equations, Academic Press, New York–London, 1969 | MR | Zbl
[17] A. Hasanov, E. T. Karimov, “Fundamental solutions for a class of three-dimensional elliptic equations with singular coefficients”, Applied Mathematics Letters, 22 (2009), 1828–1832 | DOI | MR | Zbl
[18] A. Hasanov, “Fundamental solutions of generalized bi-axially symmetric Helmholtz equation”, Complex Variables and Elliptic Equations, 52:8 (2007), 673–683 | DOI | MR | Zbl
[19] A. Hasanov, H. M. Srivastava, “Decomposition Formulas Associated with the Lauricella Multivariable Hypergeometric Functions”, Computers and Mathematics with Applications, 53:7 (2007), 1119–1128 | DOI | MR | Zbl
[20] A. Hasanov, H. M. Srivastava, “Some decomposition formulas associated with the Lauricella Function $F^{(r)}_A$ and other multiple hypergeometric functions”, Applied Mathematics Letters, 19:2 (2006), 113–121 | DOI | MR | Zbl
[21] P. Henrici, “On the domain of regularity of generalized axially symmetric potentials”, Proc. Amer. Math. Soc., 8 (1957), 29–31 | DOI | MR | Zbl
[22] P. Henrici, “Complete systems of solutions for a class of singular elliptic Partial Differential Equations”, Boundary Value Problems in differential equations, University of Wisconsin Press, Madison, 1960, 19–34 | MR
[23] A. Huber, “On the uniqueness of generalized axisymmetric potentials”, Ann. Math., 60 (1954), 351–358 | DOI | MR | Zbl
[24] E. T. Karimov, “On a boundary problem with Neumann's condition for 3-D singular elliptic equations”, Applied Mathematics Letters, 23 (2010), 517–522 | DOI | MR | Zbl
[25] D. Kumar, “Approximation of growth numbers generalized bi-axially symmetric potentials”, Fasciculi Mathematics, 35 (2005), 51–60 | MR | Zbl
[26] C. Y. Lo, “Boundary value problems of generalized axially symmetric Helmholtz equations”, Portugaliae Mathematica, 36:3–4 (1977), 279–289 | MR | Zbl
[27] O. I. Marichev, “Integral representation of solutions of the generalized double axial symmetric Helmholtz equation”, Differencial'nye Uravnenija (Minsk), 14:10 (1978), 1824–1831 (in Russian) | MR | Zbl
[28] P. A. McCoy, “Polynomial approximation and growth of generalized axisymmetric potentials”, Canadian Journal of Mathematics, 31:1 (1979), 49–59 | DOI | MR | Zbl
[29] K. B. Ranger, “On the construction of some integral operators for generalized axially symmetric harmonic and stream functions”, J. Math. Mech., 14 (1965), 383–402 | MR
[30] J. M. Rassias, A. Hasanov, “Fundamental Solutions of Two Degenerated Elliptic Equations and Solutions of Boundary Value Problems in Infinite Area”, International Journal of Applied Mathematics and Statistics, 8:7 (2007), 87–95 | MR | Zbl
[31] M. S. Salakhitdinov, A. Hasanov, “A solution of the Neumann–Dirichlet boundary value problem for generalized bi-axially symmetric Helmholtz equation”, Complex Variables and Elliptic Equations, 53:4 (2008), 355–364 | DOI | MR | Zbl
[32] R. J. Weinacht, “Some properties of generalized axially symmetric Helmholtz potentials”, SIAM J. Math. Anal., 5 (1974), 147–152 | DOI | MR | Zbl
[33] A. Weinstein, “Discontinuous integrals and generalized potential theory”, Trans. Amer. Math. Soc., 63 (1948), 342–354 | DOI | MR | Zbl
[34] A. Weinstein, “Generalized axially symmetric potentials theory”, Bull. Amer. Math. Soc., 59 (1952), 20–38 | DOI | MR