The Dirichlet problem for the generalized bi-axially symmetric Helmholtz equation
Eurasian mathematical journal, Tome 3 (2012) no. 4, pp. 99-110.

Voir la notice de l'article provenant de la source Math-Net.Ru

In [18], fundamental solutions for the generalized bi-axially symmetric Helmholtz equation were constructed in $R^+_2=\{(x,y)\colon x>0,\ y>0\}$. They contain Kummer's confluent hypergeometric functions in three variables. In this paper, using one of the constructed fundamental solutions, the Dirichlet problem is solved in the domain $\Omega\subset R^+_2$. Using the method of Green's functions, solution of this problem is found in an explicit form.
@article{EMJ_2012_3_4_a7,
     author = {M. S. Salakhitdinov and A. Hasanov},
     title = {The {Dirichlet} problem for the generalized bi-axially symmetric {Helmholtz} equation},
     journal = {Eurasian mathematical journal},
     pages = {99--110},
     publisher = {mathdoc},
     volume = {3},
     number = {4},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2012_3_4_a7/}
}
TY  - JOUR
AU  - M. S. Salakhitdinov
AU  - A. Hasanov
TI  - The Dirichlet problem for the generalized bi-axially symmetric Helmholtz equation
JO  - Eurasian mathematical journal
PY  - 2012
SP  - 99
EP  - 110
VL  - 3
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2012_3_4_a7/
LA  - en
ID  - EMJ_2012_3_4_a7
ER  - 
%0 Journal Article
%A M. S. Salakhitdinov
%A A. Hasanov
%T The Dirichlet problem for the generalized bi-axially symmetric Helmholtz equation
%J Eurasian mathematical journal
%D 2012
%P 99-110
%V 3
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2012_3_4_a7/
%G en
%F EMJ_2012_3_4_a7
M. S. Salakhitdinov; A. Hasanov. The Dirichlet problem for the generalized bi-axially symmetric Helmholtz equation. Eurasian mathematical journal, Tome 3 (2012) no. 4, pp. 99-110. http://geodesic.mathdoc.fr/item/EMJ_2012_3_4_a7/

[1] A. Altin, “Solutions of type $r^m$ for a class of singular equations”, International Journal of Mathematical Science, 5:3 (1982), 613–619 | DOI | MR | Zbl

[2] A. Altin, “Some expansion formulas for a class of singular partial differential equations”, Proceedings of American Mathematical Society, 85:1 (1982), 42–46 | DOI | MR | Zbl

[3] A. Altin, Y. Eutiquio, “Some properties of solutions of a class of singular partial differential equations”, Bulletin of the Institute of Mathematics Academic Sinica, 11:1 (1983), 81–87 | MR | Zbl

[4] P. Appell, J. Kampe de Feriet, Fonctions Hypergeometriques et Hyperspheriques; Polynomes d'Hermite, Gauthier-Villars, Paris, 1926 | Zbl

[5] A. Erdelyi, “Singularities of generalized axially symmetric potentials”, Comm. Pure Appl. Math., 2 (1956), 403–414 | DOI | MR

[6] A. Erdelyi, “An application of fractional integrals”, J. Analyse. Math., 14 (1965), 113–126 | DOI | MR | Zbl

[7] A. Erdelyi, W. Magnus, F. Oberhettinger, F. G. Tricomi, Higher transcendental functions, v. I, Izdat. Nauka, Moscow, 1973 (in Russian)

[8] A. J. Fryant, “Growth and complete sequences of generalized bi-axially symmetric potentials”, Journal of Differential Equations, 31:2 (1979), 155–164 | DOI | MR | Zbl

[9] R. Gilbert, “On the singularities of generalized axially symmetric potentials”, Arch. Rational Mech. Anal., 6 (1960), 171–176 | DOI | MR | Zbl

[10] R. Gilbert, “Some properties of generalized axially symmetric potentials”, Amer. J. Math., 84 (1962), 475–484 | DOI | MR | Zbl

[11] R. Gilbert, “ ‘Bergman’s' integral operator method in generalized axially symmetric potential theory”, J. Mathematical Phys., 5 (1964), 983–987 | DOI | MR

[12] R. Gilbert, “On the location of singularities of a class of elliptic partial differential equations in four variables”, Canad. J. Math., 17 (1965), 676–686 | DOI | MR | Zbl

[13] R. Gilbert, H. Howard, “On solutions of the generalized axially symmetric wave equation represented by Bergman operators”, Proc. London Math. Soc., 15:2 (1965), 346–360 | DOI | MR | Zbl

[14] R. Gilbert, “On the analytic properties of solutions to a generalized axially symmetric Schroedinger equations”, J. Differential equations, 3 (1967), 59–77 | DOI | MR | Zbl

[15] R. Gilbert, “An investigation of the analytic properties of solutions to the generalized axially symmetric, reduced wave equation in $n+1$ variables, with an application to the theory of potential scattering”, SIAM J. Appl. Math., 16:1 (1968), 30–50 | DOI | MR | Zbl

[16] R. Gilbert, Function Theoretic Methods in Partial Differential Equations, Academic Press, New York–London, 1969 | MR | Zbl

[17] A. Hasanov, E. T. Karimov, “Fundamental solutions for a class of three-dimensional elliptic equations with singular coefficients”, Applied Mathematics Letters, 22 (2009), 1828–1832 | DOI | MR | Zbl

[18] A. Hasanov, “Fundamental solutions of generalized bi-axially symmetric Helmholtz equation”, Complex Variables and Elliptic Equations, 52:8 (2007), 673–683 | DOI | MR | Zbl

[19] A. Hasanov, H. M. Srivastava, “Decomposition Formulas Associated with the Lauricella Multivariable Hypergeometric Functions”, Computers and Mathematics with Applications, 53:7 (2007), 1119–1128 | DOI | MR | Zbl

[20] A. Hasanov, H. M. Srivastava, “Some decomposition formulas associated with the Lauricella Function $F^{(r)}_A$ and other multiple hypergeometric functions”, Applied Mathematics Letters, 19:2 (2006), 113–121 | DOI | MR | Zbl

[21] P. Henrici, “On the domain of regularity of generalized axially symmetric potentials”, Proc. Amer. Math. Soc., 8 (1957), 29–31 | DOI | MR | Zbl

[22] P. Henrici, “Complete systems of solutions for a class of singular elliptic Partial Differential Equations”, Boundary Value Problems in differential equations, University of Wisconsin Press, Madison, 1960, 19–34 | MR

[23] A. Huber, “On the uniqueness of generalized axisymmetric potentials”, Ann. Math., 60 (1954), 351–358 | DOI | MR | Zbl

[24] E. T. Karimov, “On a boundary problem with Neumann's condition for 3-D singular elliptic equations”, Applied Mathematics Letters, 23 (2010), 517–522 | DOI | MR | Zbl

[25] D. Kumar, “Approximation of growth numbers generalized bi-axially symmetric potentials”, Fasciculi Mathematics, 35 (2005), 51–60 | MR | Zbl

[26] C. Y. Lo, “Boundary value problems of generalized axially symmetric Helmholtz equations”, Portugaliae Mathematica, 36:3–4 (1977), 279–289 | MR | Zbl

[27] O. I. Marichev, “Integral representation of solutions of the generalized double axial symmetric Helmholtz equation”, Differencial'nye Uravnenija (Minsk), 14:10 (1978), 1824–1831 (in Russian) | MR | Zbl

[28] P. A. McCoy, “Polynomial approximation and growth of generalized axisymmetric potentials”, Canadian Journal of Mathematics, 31:1 (1979), 49–59 | DOI | MR | Zbl

[29] K. B. Ranger, “On the construction of some integral operators for generalized axially symmetric harmonic and stream functions”, J. Math. Mech., 14 (1965), 383–402 | MR

[30] J. M. Rassias, A. Hasanov, “Fundamental Solutions of Two Degenerated Elliptic Equations and Solutions of Boundary Value Problems in Infinite Area”, International Journal of Applied Mathematics and Statistics, 8:7 (2007), 87–95 | MR | Zbl

[31] M. S. Salakhitdinov, A. Hasanov, “A solution of the Neumann–Dirichlet boundary value problem for generalized bi-axially symmetric Helmholtz equation”, Complex Variables and Elliptic Equations, 53:4 (2008), 355–364 | DOI | MR | Zbl

[32] R. J. Weinacht, “Some properties of generalized axially symmetric Helmholtz potentials”, SIAM J. Math. Anal., 5 (1974), 147–152 | DOI | MR | Zbl

[33] A. Weinstein, “Discontinuous integrals and generalized potential theory”, Trans. Amer. Math. Soc., 63 (1948), 342–354 | DOI | MR | Zbl

[34] A. Weinstein, “Generalized axially symmetric potentials theory”, Bull. Amer. Math. Soc., 59 (1952), 20–38 | DOI | MR