The Dirichlet problem for the generalized bi-axially symmetric Helmholtz equation
Eurasian mathematical journal, Tome 3 (2012) no. 4, pp. 99-110

Voir la notice de l'article provenant de la source Math-Net.Ru

In [18], fundamental solutions for the generalized bi-axially symmetric Helmholtz equation were constructed in $R^+_2=\{(x,y)\colon x>0,\ y>0\}$. They contain Kummer's confluent hypergeometric functions in three variables. In this paper, using one of the constructed fundamental solutions, the Dirichlet problem is solved in the domain $\Omega\subset R^+_2$. Using the method of Green's functions, solution of this problem is found in an explicit form.
@article{EMJ_2012_3_4_a7,
     author = {M. S. Salakhitdinov and A. Hasanov},
     title = {The {Dirichlet} problem for the generalized bi-axially symmetric {Helmholtz} equation},
     journal = {Eurasian mathematical journal},
     pages = {99--110},
     publisher = {mathdoc},
     volume = {3},
     number = {4},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2012_3_4_a7/}
}
TY  - JOUR
AU  - M. S. Salakhitdinov
AU  - A. Hasanov
TI  - The Dirichlet problem for the generalized bi-axially symmetric Helmholtz equation
JO  - Eurasian mathematical journal
PY  - 2012
SP  - 99
EP  - 110
VL  - 3
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2012_3_4_a7/
LA  - en
ID  - EMJ_2012_3_4_a7
ER  - 
%0 Journal Article
%A M. S. Salakhitdinov
%A A. Hasanov
%T The Dirichlet problem for the generalized bi-axially symmetric Helmholtz equation
%J Eurasian mathematical journal
%D 2012
%P 99-110
%V 3
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2012_3_4_a7/
%G en
%F EMJ_2012_3_4_a7
M. S. Salakhitdinov; A. Hasanov. The Dirichlet problem for the generalized bi-axially symmetric Helmholtz equation. Eurasian mathematical journal, Tome 3 (2012) no. 4, pp. 99-110. http://geodesic.mathdoc.fr/item/EMJ_2012_3_4_a7/