Krylov subspace methods of approximate solving differential equations from the point of view of functional calculus
Eurasian mathematical journal, Tome 3 (2012) no. 4, pp. 53-80.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper deals with projection methods of approximate solving the problem $$ Fx'=Gx+bu(t),\qquad y=\langle x,d\rangle $$ which consist in passage to the reduced-order problem $$ \widehat F\hat x'=\widehat G\hat x+\hat bu(t),\qquad \hat y=\langle\hat x,\hat d\rangle, $$ where $$ \widehat F=\Lambda FV,\qquad\widehat G=\Lambda GV,\qquad\hat b=\Lambda b,\qquad\hat d=V^*d. $$ It is shown that, if $V$ and $\Lambda$ are constructed on the basis of Krylov's subspaces, a projection method is equivalent to the replacement in the formula expressing the impulse response via the exponential function of the pencil $\lambda\mapsto\lambda F-G$, of the exponential function by its rational interpolation satisfying some interpolation conditions. Special attention is paid to the case when $F$ is not invertible.
@article{EMJ_2012_3_4_a5,
     author = {V. G. Kurbatov and I. V. Kurbatova},
     title = {Krylov subspace methods of approximate solving differential equations from the point of view of functional calculus},
     journal = {Eurasian mathematical journal},
     pages = {53--80},
     publisher = {mathdoc},
     volume = {3},
     number = {4},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2012_3_4_a5/}
}
TY  - JOUR
AU  - V. G. Kurbatov
AU  - I. V. Kurbatova
TI  - Krylov subspace methods of approximate solving differential equations from the point of view of functional calculus
JO  - Eurasian mathematical journal
PY  - 2012
SP  - 53
EP  - 80
VL  - 3
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2012_3_4_a5/
LA  - en
ID  - EMJ_2012_3_4_a5
ER  - 
%0 Journal Article
%A V. G. Kurbatov
%A I. V. Kurbatova
%T Krylov subspace methods of approximate solving differential equations from the point of view of functional calculus
%J Eurasian mathematical journal
%D 2012
%P 53-80
%V 3
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2012_3_4_a5/
%G en
%F EMJ_2012_3_4_a5
V. G. Kurbatov; I. V. Kurbatova. Krylov subspace methods of approximate solving differential equations from the point of view of functional calculus. Eurasian mathematical journal, Tome 3 (2012) no. 4, pp. 53-80. http://geodesic.mathdoc.fr/item/EMJ_2012_3_4_a5/

[1] A. C. Antoulas, Approximation of Large-Scale Dynamical Systems, SIAM, Philadelphia, 2005 | MR | Zbl

[2] Z. Bai, “Krylov subspace technique for reduced-order modelling of large-scale dynamical systems”, Applied Numerical Mathematics, 43:9 (2002), 9–44 | DOI | MR | Zbl

[3] G. A. Baker, P. Graves-Morris, Pade Approximations, Part I, II, Addison-Wesley Publishing Company, London, 1981

[4] N. Balabanian, Network Synthesis, Prentice-Hall, N.J., 1958

[5] Sb. Math., 193:11 (2002), 1573–1610 | DOI | DOI | MR | Zbl

[6] S. I. Baskakov, Lectures on Circuit Theory, KomKniga, Moscow, 2005 (in Russian)

[7] P. Benner, V. Mehrmann, D. C. Sorensen, Dimension Reduction of Large-Scale Systems, Springer-Verlag, Berlin–Heidelberg, 2005 | MR

[8] D. L. Boley, “Krylov space methods on state-space control models”, Circuit, Systems and Signal Process, 13 (1994), 733–758 | DOI | MR | Zbl

[9] N. Bourbaki, Éléments de Mathématique. Espaces Vectoriels Topologiques, Masson, Paris, 1981 | MR

[10] N. Bourbaki, Éléments de Mathématique. Théories Spectrales, Hermann, Paris, 1967 | MR

[11] Yu. A. Brychkov, A. P. Prudnikov, Integral Transformations of Generalized Functions, Gordon Breach Sci. Publ., New York, 1989 | MR | Zbl

[12] W. J. Cody, G. Meinardus, R. S. Varga, “Chebyshev rational approximations to $e^{-x}$ in $[0,+1)$ and applications to heat-conduction problems”, J. Approx. Theory, 2:1 (1969), 50–65 | DOI | MR | Zbl

[13] P. Feldman, R. W. Freund, “Efficient linear circuit analysis by Pade approximation via the Lanczos process”, IEEE Trans. Computer-Aided Design, 14, May (1995), 639–649 | DOI

[14] R. W. Freund, “Model reduction methods based on Krylov subspaces”, Acta Numerica, 12 (2003), 267–319 | DOI | MR | Zbl

[15] K. Gallivan, E. J. Grimme, P. Van Dooren, “A rational Lanczos algorithm for model reduction”, Numerical Algorithms, 2:1–2 (1996), 33–63 | DOI | MR | Zbl

[16] K. Gallivan, A. Vandendorpe, P. Van Dooren, “Model reduction of MIMO systems via tangential interpolation”, SIAM Journal on Matrix Analysis and Applications, 26:2 (2004), 328–349 | DOI | MR | Zbl

[17] Chelsea, N.-Y., 1959 | MR

[18] E. J. Grimme, Krylov Projection Methods for Model Order Reduction, Ph. D. thesis, University of Illinois at Urbana-Champaign, 1997

[19] E. Hairer, S. P. Nørsett, G. Wanner, Solving Ordinary Differential Equations, v. I, Nonstiff Problems, Springer-Verlag, Berlin, 1987 | MR | Zbl

[20] E. Hairer, G. Wanner, Solving Ordinary Differential Equations, v. II, Stiff and Differential-Algebraic Problems, Springer-Verlag, Berlin, 1996 | MR | Zbl

[21] E. Hille, R. S. Phillips, Functional Analysis and Semi-Groups, AMS, Providence, Rhode Island, 1957 | MR | Zbl

[22] Kh. D. Ikramov, “Matrix Pencils – Theory, Applications, and Numerical Methods”, Progress in Science and Technology, Series on Mathematical Analysis, 29, Akad. Nauk SSSR, All-Union Institute for Scientific and Technical Information (VINITI), Moscow, 1991, 3–106 (in Russian) | MR | Zbl

[23] Kh. D. Ikramov, The Nonsymmetric Eigenvalue Problem, Nauka, Moscow, 1991 | MR

[24] Knizhnerman L., Simoncini V., “A new investigation of the extended Krylov subspace method for matrix function evaluations”, Numerical Linear Algebra With Applications, 17:4 (2010), 615–638 | MR | Zbl

[25] N. D. Kopachevskii, S. G. Krein, Ngo Zui Kan, Operator Methods in Linear Hydrodynamics: Evolution and Spectral Problems, Nauka, Moscow, 1989 (in Russian) | MR | Zbl

[26] L. D. Kudryavtsev, Concise Course of Mathematical Calculus, Nauka, Moscow, 1989 (in Russian)

[27] V. G. Kurbatov, M. N. Oreshina, “Interconnect macromodelling and approximation of matrix exponent”, Analog Integrated Circuits and Signal Processing, 40:1 (2004), 5–19 | DOI

[28] I. V. Kurbatova, “On generalized impulse response”, Vestnik VGU (Voronezh). Physics and Mathematics, 2007, no. 1, 148–152 (in Russian)

[29] Mathematical Notes, 86:3 (2009), 361–367 | DOI | DOI | MR | Zbl

[30] I. V. Kurbatova, Pseudoresolvents, Functional Calculus, and Operator Pencils, Voronezh State Univ. Research Math. Institute, Voronezh, 2010 (in Russian)

[31] M. A. Lavrent'ev, B. V. Shabat, Methods of the Theory of Functions of a Complex Variable, Nauka, Moscow, 1965 (in Russian) | MR | Zbl

[32] A. S. Markus, Introduction to the Spectral Theory of Polynomial Operator Pencils, AMS, Providence, R.I., 1988 | MR | Zbl

[33] A. Odabasioglu, M. Celik, L. T. Pillegi, “PRIMA: Passive reduced-order interconnect macromodeling algorithm”, IEEE Trans. Computer-Aided Design, 17:8, Aug. (1998), 645–654 | DOI

[34] B. N. Parlett, The Symmetric Eigenvalue Problem, Prentice-Hall, N.J., 1980 | MR | Zbl

[35] V. P. Popov, Foundations of Circuit Theory, Vysshaya Shkola, Moscow, 1998 (in Russian)

[36] A. Preumont, Vibration Control of Active Structures, Kluwer Academic Publishers, Dordrecht, 2002 | MR

[37] W. Rudin, Functional Analysis, McGraw-Hill Book Company, N.-Y., 1973 | MR | Zbl

[38] Y. Saad, “Analysis of some Krylov subspace approximations to the matrix exponential operator”, SIAM J. Numer. Anal., 29 (1992), 209–228 | DOI | MR | Zbl

[39] Y. Saad, Iterative Methods for Sparse Linear Systems, PWS, Boston, 1996 | Zbl

[40] L. Schwartz, “Transformation de Laplace des distributions”, Séminaire Mathematique de l'Université de Lund, Tome supplémentaire dedié á M. Riesz, l'Université de Lund, 1952, 196–206 | MR | Zbl

[41] L. Schwartz, “Distributions á valeurs vectorielles”, Ann. Inst. Fourier (Grenoble), 7 (1957), 1–141 | DOI | MR | Zbl

[42] S. Seshu, M. B. Reed, Linear Graphs and Electric Networks, Addison-Wesley Publishing Company, Mass., 1961 | MR | Zbl

[43] Math. USSR-Sb., 73:2 (1992), 579–602 | DOI | MR | Zbl | Zbl

[44] V. Simoncini, D. B. Szyld, “Recent computational developments in Krylov subspace methods for linear systems”, Numerical Linear Algebra with Applications, 14:1 (2007), 1–59 | DOI | MR | Zbl

[45] C. de Villemagne, R. E. Skelton, “Model reductions using a projection formulation”, Internat. J. Control, 46:6 (1987), 2141–2169 | DOI | MR

[46] J. Vlach, K. Singhal, Computer Methods for Circuit Analysis and Design, Kluwer Academic Publishers, Dordrecht, 1994

[47] M. Dekker, N.Y., 1971 | MR | Zbl | Zbl

[48] H. A. Van der Vorst, Iterative Krylov Methods for Large Linear Systems, Cambridge Univ. Press, Cambridge, 2003 | MR

[49] J. L. Walsh, Interpolation and Approximation by Rational Functions in the Complex Domain, AMS, Providence, Rhode Island, 1960 | MR | Zbl