Orthogonality and smooth points in $C(K)$ and $C_b(\Omega)$
Eurasian mathematical journal, Tome 3 (2012) no. 4, pp. 44-52.

Voir la notice de l'article provenant de la source Math-Net.Ru

For the usual norm on spaces $C(K)$ and $C_b(\Omega)$ of all continuous functions on a compact Hausdorff space $K$ (all bounded continuous functions on a locally compact Hausdorff space $\Omega$), the following equalities are proved: $$ \lim_{t\to0+}\frac{\|f+tg\|_{C(K)}-\|f\|_{C(K)}}t=\max_{x\in\{z\mid\,|f(z)|=\|f\|\}}\operatorname{Re}(e^{-i\arg f(x)}g(x)) $$ and $$ \lim_{t\to0+}\frac{\|f+tg\|_{C_b(\Omega)}-\|f\|_{C_b(\Omega)}}t=\inf_{\delta>0}\sup_{x\in\{z\mid\,|f(z)|\ge\|f\|-\delta\}}\operatorname{Re}(e^{-i\arg f(x)}g(x)). $$ These equalities are used to characterize the orthogonality in the sense of James (Birkhoff) in spaces $C(K)$ and $C_b(\Omega)$ as well as to give necessary and sufficient conditions for a point on the unit sphere to be a smooth point.
@article{EMJ_2012_3_4_a4,
     author = {D. J. Ke\v{c}ki\'c},
     title = {Orthogonality and smooth points in $C(K)$ and $C_b(\Omega)$},
     journal = {Eurasian mathematical journal},
     pages = {44--52},
     publisher = {mathdoc},
     volume = {3},
     number = {4},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2012_3_4_a4/}
}
TY  - JOUR
AU  - D. J. Kečkić
TI  - Orthogonality and smooth points in $C(K)$ and $C_b(\Omega)$
JO  - Eurasian mathematical journal
PY  - 2012
SP  - 44
EP  - 52
VL  - 3
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2012_3_4_a4/
LA  - en
ID  - EMJ_2012_3_4_a4
ER  - 
%0 Journal Article
%A D. J. Kečkić
%T Orthogonality and smooth points in $C(K)$ and $C_b(\Omega)$
%J Eurasian mathematical journal
%D 2012
%P 44-52
%V 3
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2012_3_4_a4/
%G en
%F EMJ_2012_3_4_a4
D. J. Kečkić. Orthogonality and smooth points in $C(K)$ and $C_b(\Omega)$. Eurasian mathematical journal, Tome 3 (2012) no. 4, pp. 44-52. http://geodesic.mathdoc.fr/item/EMJ_2012_3_4_a4/

[1] T. J. Abatzoglu, “Norm derivatives on spaces of operators”, Math. Ann., 239 (1979), 129–135 | DOI | MR

[2] C. Alsina, J. Sikorska, M. Santos Tomas, Norm derivatives and characterizations of inner product spaces, World scientific publishing, 2010 | MR | Zbl

[3] D. Amir, Characterizations of inner product spaces, Birkhauser Verlag, 1986 | MR | Zbl

[4] G. Birkhoff, “Orthogonality in linear metric spaces”, Duke Math. J., 1 (1935), 169–172 | DOI | MR | Zbl

[5] S. Dragomir, Semi-inner products and applications, Nova Science Pub. Inc., 2004 | MR | Zbl

[6] R. C. James, “Orthogonality and linear functionals in normed linear spaces”, Trans. Amer. Math. Soc., 61 (1947), 265–292 | DOI | MR

[7] D. J. Kečkić, “Orthogonality in $\mathfrak S_1$ and $\mathfrak S_\infty$ spaces and normal derivations”, J. Oper. Theory, 51:1 (2004), 89–104 | MR

[8] D. J. Kečkić, “Gateaux derivative of $B(H)$ norm”, Proc. Amer. Math. Soc., 133 (2005), 2061–2067 | DOI | MR