Orthogonality and smooth points in $C(K)$ and $C_b(\Omega)$
Eurasian mathematical journal, Tome 3 (2012) no. 4, pp. 44-52
Voir la notice de l'article provenant de la source Math-Net.Ru
For the usual norm on spaces $C(K)$ and $C_b(\Omega)$ of all continuous functions on a compact Hausdorff space $K$ (all bounded continuous functions on a locally compact Hausdorff space $\Omega$), the following equalities are proved:
$$
\lim_{t\to0+}\frac{\|f+tg\|_{C(K)}-\|f\|_{C(K)}}t=\max_{x\in\{z\mid\,|f(z)|=\|f\|\}}\operatorname{Re}(e^{-i\arg f(x)}g(x))
$$
and
$$
\lim_{t\to0+}\frac{\|f+tg\|_{C_b(\Omega)}-\|f\|_{C_b(\Omega)}}t=\inf_{\delta>0}\sup_{x\in\{z\mid\,|f(z)|\ge\|f\|-\delta\}}\operatorname{Re}(e^{-i\arg f(x)}g(x)).
$$
These equalities are used to characterize the orthogonality in the sense of James (Birkhoff) in spaces $C(K)$ and $C_b(\Omega)$ as well as to give necessary and sufficient conditions for a point on the unit sphere to be a smooth point.
@article{EMJ_2012_3_4_a4,
author = {D. J. Ke\v{c}ki\'c},
title = {Orthogonality and smooth points in $C(K)$ and $C_b(\Omega)$},
journal = {Eurasian mathematical journal},
pages = {44--52},
publisher = {mathdoc},
volume = {3},
number = {4},
year = {2012},
language = {en},
url = {http://geodesic.mathdoc.fr/item/EMJ_2012_3_4_a4/}
}
D. J. Kečkić. Orthogonality and smooth points in $C(K)$ and $C_b(\Omega)$. Eurasian mathematical journal, Tome 3 (2012) no. 4, pp. 44-52. http://geodesic.mathdoc.fr/item/EMJ_2012_3_4_a4/