Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2012_3_4_a4, author = {D. J. Ke\v{c}ki\'c}, title = {Orthogonality and smooth points in $C(K)$ and $C_b(\Omega)$}, journal = {Eurasian mathematical journal}, pages = {44--52}, publisher = {mathdoc}, volume = {3}, number = {4}, year = {2012}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2012_3_4_a4/} }
D. J. Kečkić. Orthogonality and smooth points in $C(K)$ and $C_b(\Omega)$. Eurasian mathematical journal, Tome 3 (2012) no. 4, pp. 44-52. http://geodesic.mathdoc.fr/item/EMJ_2012_3_4_a4/
[1] T. J. Abatzoglu, “Norm derivatives on spaces of operators”, Math. Ann., 239 (1979), 129–135 | DOI | MR
[2] C. Alsina, J. Sikorska, M. Santos Tomas, Norm derivatives and characterizations of inner product spaces, World scientific publishing, 2010 | MR | Zbl
[3] D. Amir, Characterizations of inner product spaces, Birkhauser Verlag, 1986 | MR | Zbl
[4] G. Birkhoff, “Orthogonality in linear metric spaces”, Duke Math. J., 1 (1935), 169–172 | DOI | MR | Zbl
[5] S. Dragomir, Semi-inner products and applications, Nova Science Pub. Inc., 2004 | MR | Zbl
[6] R. C. James, “Orthogonality and linear functionals in normed linear spaces”, Trans. Amer. Math. Soc., 61 (1947), 265–292 | DOI | MR
[7] D. J. Kečkić, “Orthogonality in $\mathfrak S_1$ and $\mathfrak S_\infty$ spaces and normal derivations”, J. Oper. Theory, 51:1 (2004), 89–104 | MR
[8] D. J. Kečkić, “Gateaux derivative of $B(H)$ norm”, Proc. Amer. Math. Soc., 133 (2005), 2061–2067 | DOI | MR