The role of Morrey spaces in the study of Navier--Stokes and Euler equations
Eurasian mathematical journal, Tome 3 (2012) no. 3, pp. 62-93.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this survey, we will pay a few words on the solution of the Cauchy problem for the 3D Navier–Stokes or Euler equations (with a focus on real harmonic analysis methods). Then we will highlight the role of Morrey spaces in other problems for the Navier–Stokes equations : uniqueness, weak-strong uniqueness, self-similar solutions, etc.
@article{EMJ_2012_3_3_a4,
     author = {P.-G. Lemari\'e-Rieusset},
     title = {The role of {Morrey} spaces in the study of {Navier--Stokes} and {Euler} equations},
     journal = {Eurasian mathematical journal},
     pages = {62--93},
     publisher = {mathdoc},
     volume = {3},
     number = {3},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2012_3_3_a4/}
}
TY  - JOUR
AU  - P.-G. Lemarié-Rieusset
TI  - The role of Morrey spaces in the study of Navier--Stokes and Euler equations
JO  - Eurasian mathematical journal
PY  - 2012
SP  - 62
EP  - 93
VL  - 3
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2012_3_3_a4/
LA  - en
ID  - EMJ_2012_3_3_a4
ER  - 
%0 Journal Article
%A P.-G. Lemarié-Rieusset
%T The role of Morrey spaces in the study of Navier--Stokes and Euler equations
%J Eurasian mathematical journal
%D 2012
%P 62-93
%V 3
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2012_3_3_a4/
%G en
%F EMJ_2012_3_3_a4
P.-G. Lemarié-Rieusset. The role of Morrey spaces in the study of Navier--Stokes and Euler equations. Eurasian mathematical journal, Tome 3 (2012) no. 3, pp. 62-93. http://geodesic.mathdoc.fr/item/EMJ_2012_3_3_a4/

[1] P. Auscher, P. Tchamitchian, Espaces critiques pour le système des équations de Navier–Stokes incompressibles, Preprint, , 1999 http://hal.archives-ouvertes.fr/docs/00/34/93/82/PDF/NS.pdf

[2] H. Bahouri, J. Y. Chemin, R. Danchin, Fourier analysis and nonlinear partial differential equations, Springer, 2011 | MR | Zbl

[3] O. Barraza, “Self-similar solutions in weak $L^p$-spaces of the Navier–Stokes equations”, Revista Mat. Iberoamer., 12 (1996), 411–439 | DOI | MR | Zbl

[4] A. Basson, “Homogeneous Statistical Solutions and Local Energy Inequality for 3D Navier–Stokes Equations”, Comm. Math. Phys., 266 (2006), 17–35 | DOI | MR | Zbl

[5] A. Basson, Solutions spatialement homogènes adaptées des équations de Navier–Stokes, Thèse, Univ. Evry, 2006

[6] A. S. Besicovitch, Almost Periodic Functions, Dover, New York, 1954 | MR

[7] J. Bourgain, J. N. Pavlovič, “Ill–posedness of the Navier–Stokes equations in a critical space in 3D”, J. Funct. Anal., 255 (2008), 2233–2247 | DOI | MR | Zbl

[8] F. E. Browder, “Nonlinear equations of evolution”, Ann. of Math., 80 (1964), 485–523 | DOI | MR | Zbl

[9] L. Caffarelli, R. Kohn, L. Nirenberg, “Partial regularity of suitable weak solutions of the Navier–Stokes equations”, Comm. Pure Appl. Math., 35 (1982), 771–831 | DOI | MR | Zbl

[10] A. P. Calderón, “Commutators of singular integral operators”, Proc. Nat. Acad. Sc. USA, 53 (1965), 1092–1099 | DOI | MR | Zbl

[11] S. Campanato, “Propietà di hölderianitá di alcune classi di funzioni”, Ann. Scuola Norm. Sup. Pisa, 17 (1963), 175–188 | MR | Zbl

[12] M. Cannone, Ondelettes, paraproduits et Navier–Stokes, Diderot Editeur, Paris, 1995 | MR | Zbl

[13] J. Y. Chemin, Perfect incompressible fluids, Oxford lecture series in mathematics and its applications, 1998 | MR

[14] J. Y. Chemin, “Théorèmes d'unicité pour le système de Navier–Stokes tridimensionnel”, J. Anal. Math., 77 (1999), 27–50 | DOI | MR | Zbl

[15] Q. Chen, C. Miao, Z. Zhang, “On the uniqueness of weak solutions for the 3D Navier–Stokes equations”, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 2165–2180 | DOI | MR | Zbl

[16] Q. Chen, C. Miao, Z. Zhang, “On the well-posedness of the ideal MHD equations in the Triebel–Lizorkin spaces”, Arch. Rational Mech. Anal., 195 (2010), 561–578 | DOI | MR | Zbl

[17] R. R. Coifman, Y. Meyer, Au delà des opérateurs pseudo-différentiels, Astérisque, 57, Société Math. de France, 1978 | MR

[18] R. R. Coifman, G. Weiss, “Extension of the Hardy spaces and their use in analysis”, Bull. Amer. Soc. Math., 83 (1977), 569–645 | DOI | MR | Zbl

[19] D. Deng, Y. S. Han, “T1 theorem for Besov and Triebel–Lizorkin spaces”, Science in China, Ser. A, 48 (2005), 657–665 | DOI | MR | Zbl

[20] E. Fabes, B. Jones, N. Riviere, “The initial value problem for the Navier–Stokes equations with data in $L^p$”, Arch. Rat. Mech. Anal., 45 (1972), 222–240 | DOI | MR | Zbl

[21] P. Federbush, “Navier and Stokes meet the wavelet”, Comm. Math. Phys., 155 (1993), 219–248 | DOI | MR | Zbl

[22] C. Fefferman, “The uncertainty principle”, Bull. Amer. Math. Soc., 9 (1983), 129–206 | DOI | MR | Zbl

[23] C. Foias, C. Guillopé, R. Temam, “New a priori estimates for Navier–Stokes equations in dimension 3”, Comm. Partial Diff. Eq., 6 (1981), 329–359 | DOI | MR | Zbl

[24] C. Foias, O. Manley, R. Rosa, R. Temam, Navier–Stokes Equations and Turbulence, Cambridge Univ. Press, 2001 | MR | Zbl

[25] H. Fulita, T. Kato, “On the Navier–Stokes initial value problem, I”, Arch. Rat. Mech. Anal., 16 (1964), 269–315 | DOI | MR

[26] G. Furioli, P. G. Lemarié-Rieusset, E. Terraneo, “Unicité dans $L^3(\mathbb R^3)$ et d'autres espaces limites pour Navier–Stokes”, Revista Mat. Iberoamer., 16 (2000), 605–667 | DOI | MR | Zbl

[27] P. Gérard, Y. Meyer, F. Oru, “Inégalités de Sobolev précisées”, Séminaire sur les Équations aux Dérivées Partielles, École Polytechniques, 1996–1997, Exposé No. IV | MR

[28] P. Germain, “Multipliers, paramultipliers, and weak-strong uniqueness for the Navier–Stokes equations”, J. Diff. Eq., 226 (2006), 373–428 | DOI | MR | Zbl

[29] P. Germain, “The second iterate for the Navier–Stokes equation”, J. Funct. Anal., 255 (2008), 2248–2264 | DOI | MR | Zbl

[30] Y. Giga, T. Miyakawa, “Navier–Stokes flow in $\mathbb R^3$ with measures as initial vorticity and Morrey spaces”, Comm. P. D. E., 14 (1989), 577–618 | DOI | MR | Zbl

[31] Z. Grujić, “Regularity of forward-in-time self-similar solutions to the 3D Navier–Stokes equations”, Discrete Cont. Dyn. Systems, 14 (2006), 837–843 | DOI | MR | Zbl

[32] E. Hopf, “Statistical hydrodynamics and functional calculus”, J. Rational Mech. Anal., 1 (1952), 87–123 | MR | Zbl

[33] T. Kato, “Nonlinear evolution equations in Banach spaces”, Proceedings of the Symposium on Applied Mathematics, 17, AMS, 1965, 50–67 | DOI | MR

[34] T. Kato, “Strong $L^p$ solutions of the Navier–Stokes equations in $\mathbb R^m$ with applications to weak solutions”, Math. Zeit., 187 (1984), 471–480 | DOI | MR | Zbl

[35] T. Kato, “Strong solutions of the Navier–Stokes equations in Morrey spaces”, Bol. Soc. Brasil. Math., 22 (1992), 127–155 | DOI | MR | Zbl

[36] H. Koch, D. Tataru, “Well-posedness for the Navier–Stokes equations”, Advances in Math., 157 (2001), 22–35 | DOI | MR | Zbl

[37] H. Kozono, H. Sohr, “Remark on uniqueness of weak solutions to the Navier–Stokes equations”, Analysis, 16 (1996), 255–271 | DOI | MR | Zbl

[38] H. Kozono, Y. Taniuchi, “Bilinear estimates in BMO and the Navier–Stokes equations”, Math. Z., 235 (2000), 173–194 | DOI | MR | Zbl

[39] H. Kozono, Y. Yamazaki, “Semilinear heat equations and the Navier–Stokes equations with distributions in new function spaces as initial data”, Comm. P. D. E., 19 (1994), 959–1014 | DOI | MR | Zbl

[40] Y. Le Jan, A. S. Sznitman, “Cascades aléatoires et équations de Navier–Stokes”, C. R. Acad. Sci. Paris, Série I, 324 (1997), 823–826 | DOI | MR | Zbl

[41] F. Lelièvre, P. G. Lemarié-Rieusset, “Suitable solutions for the Navier–Stokes problem with an homogeneous initial value”, Comm. Math. Phys., 307 (2011), 133–156 | DOI | MR | Zbl

[42] P. G. Lemarié, Algèbres d'opérateurs et semi-groupes de Poisson sur un espace de nature homogène, Publications Mathématiques d'Orsay, 1984 | MR | Zbl

[43] P. G. Lemarié, “Continuité sur les espaces de Besov des opérateurs définis par des intégrales singulières”, Ann. Inst. Fourier, 35 (1985), 175–187 | DOI | MR | Zbl

[44] P. G. Lemarié-Rieusset, “Solutions faibles d'énergie infinie pour les équations de Navier–Stokes dans $\mathbb R^3$”, C. R. Acad. Sc. Paris, Série I, 328 (1999), 1133–1138 | DOI | MR | Zbl

[45] P. G. Lemarié-Rieusset, Recent developments in the Navier–Stokes problem, Chapman Hall/CRC, 2002 | MR | Zbl

[46] P. G. Lemarié-Rieusset, “The Navier–Stokes equations in the critical Morrey–Campanato space”, Revista Mat. Iberoamer., 23 (2007), 897–930 | DOI | MR | Zbl

[47] P. G. Lemarié-Rieusset, “Euler equations and real harmonic analysis”, Arch. Rat. Mech. Anal., 204 (2012), 355–386 | DOI | MR | Zbl

[48] P. G. Lemarié-Rieusset, “Uniqueness for the Navier–Stokes problem: Remarks on a theorem of Jean-Yves Chemin”, Nonlinearity, 20 (2007), 1475–1490 | DOI | MR | Zbl

[49] P. G. Lemarié-Rieusset, R. May, “Uniqueness for the Navier–Stokes equations and multiplier between Sobolev spaces”, Nonlinear Analysis, 66 (2007), 813–838 | DOI | MR

[50] J. Leray, “Essai sur le mouvement d'un fluide visqueux emplissant l'espace”, Acta Math., 63 (1934), 193–248 | DOI | MR | Zbl

[51] R. May, Régularité et unicité des solutions milds des équations de Navier–Stokes, Thèse, Université d'Evry, 2002

[52] R. May, “Extension d'une classe d'unicité pour les équations de Navier–Stokes”, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 705–718 | DOI | MR | Zbl

[53] V. G. Maz'ya, “On the theory of the $n$-dimensional Schrödinger operator”, Izv. Akad. Nauk SSSR, ser. Mat., 28:5 (1964), 1145–1172 (in Russian) | MR | Zbl

[54] V. G. Maz'ya, T. O. Shaposhnikova, The theory of multipliers in spaces of differentiable functions, Pitman, New-York, 1985 | Zbl

[55] V. G. Maz'ya, I. E. Verbitsky, “The Schrödinger operator on the energy space: boundedness and compactness criteria”, Acta Math., 188 (2002), 263–302 | DOI | MR | Zbl

[56] Y. Meyer, “Wavelets, paraproducts and Navier–Stokes equations”, Current developments in mathematics, 1996, International Press, Boston, MA, 1997, 105–212 | MR | Zbl

[57] S. Monniaux, “Uniqueness of mild solutions of the Navier–Stokes equation and maximal $L^p$-regularity”, C. R. Acad. Sci. Paris, Série I, 328 (1999), 663–668 | DOI | MR | Zbl

[58] S. Montgomery-Smith, “Finite time blow up for a Navier–Stokes like equation”, Proc. A. M. S., 129 (2001), 3017–3023 | DOI | MR

[59] C. B. Morrey (Jr.), “On the solutions of quasi-linear elliptic partial differential equations”, Trans. Amer. Math. Soc., 43 (1938), 126–166 | DOI | MR | Zbl

[60] J. Nečas, M. Ružička, V. Šverák, “On Leray's self-similar solutions of the Navier–Stokes equations”, Acta Math., 176 (1996), 283–294 | DOI | MR

[61] F. Oru, Róle des oscillations dans quelques problèmes d'analyse non linéaire, Thèse, École Normale Supérieure de Cachan, 1998

[62] C. W. Oseen, Neuere Methoden und Ergebnisse in der Hydrodynamik, Akademische Verlags-gesellschaft, Leipzig, 1927 | Zbl

[63] H. C. Pak, Y. J. Park, “Existence of solution for the Euler equations in a critical Besov space $B^1_{\infty,1}(\mathbb R^n)$”, Comm. P. D. E., 29 (2004), 1149–1166 | DOI | MR | Zbl

[64] F. Planchon, Solutions globales et comportement asymptotique pour les équations de Navier–Stokes, Thèse, Ecole Polytechnique, 1996 | MR

[65] V. Scheffer, “Hausdorff measure and the Navier–Stokes equations”, Comm. Math. Phys., 55 (1977), 97–112 | DOI | MR | Zbl

[66] J. Serrin, “On the interior regularity of weak solutions of the Navier–Stokes equations”, Arch. Rat. Mech. Anal., 9 (1962), 187–195 | DOI | MR | Zbl

[67] R. Takada, “Local existence and blow-up criterion for the Euler equations in Besov spaces of weak type”, J. Evolution Eq., 8 (2008), 693–725 | DOI | MR | Zbl

[68] L. Tartar, An introduction to Navier–Stokes equation and oceanography, Springer Verlag, 2006 | MR | Zbl

[69] M. E. Taylor, “Analysis on Morrey spaces and applications to Navier–Stokes equations and other evolution equations”, Comm. P. D. E., 17 (1992), 1407–1456 | DOI | MR | Zbl

[70] T.-P. Tsai, “On Leray's self-similar solutions of the Navier–Stokes equations satisfying local energy estimates”, Arch. Rational Mech. Anal., 143 (1998), 29–51 | DOI | MR | Zbl

[71] M. I. Vishik, A. V. Fursikov, Mathematical Problems of Statistical Hydromechanics, Kluwer Academic Publishers, Dordrecht, 1988 | Zbl

[72] F. B. Weissler, “The Navier–Stokes initial value problem in $L^p$”, Arch. Rational Mech. Anal., 74 (1981), 219–230 | DOI | MR

[73] Z. Wu, C. Xie, “$Q$ spaces and Morrey spaces”, J. Funct Anal., 201 (2003), 282–297 | DOI | MR | Zbl

[74] J. Xiao, “Homothetic Variant of Fractional Sobolev Space with Application to Navier–Stokes System”, Dynamics of PDE, 4 (2007), 227–245 | MR | Zbl

[75] T. Yoneda, “Ill-posedness of the 3D-Navier–Stokes equations in a generalized Besov space near $\mathrm{BMO}^{-1}$”, J. Funct. Anal., 258 (2010), 3376–3387 | DOI | MR | Zbl

[76] W. Von Wahl, The equations of Navier–Stokes and abstract parabolic equations, Vieweg and Sohn, Wiesbaden, 1985 | MR