Recent progress in studying the boundedness of classical operators of real analysis in general Morrey-type spaces.~I
Eurasian mathematical journal, Tome 3 (2012) no. 3, pp. 11-32.

Voir la notice de l'article provenant de la source Math-Net.Ru

The survey is aimed at providing detailed information about recent results in the problem of the boundedness in general Morrey-type spaces of various important operators of real analysis, namely of the maximal operator, fractional maximal operator, Riesz potential, singular integral operator, Hardy operator. The main focus is on the results which contain, for a certain range of the numerical parameters, necessary and sufficient conditions on the functional parameters characterizing general Morrey-type spaces, ensuring the boundedness of the aforementioned operators from one general Morrey-type space to another one. The major part of the survey is dedicated to the results obtained by the author jointly with his co-authores A. Gogatishvili, M. L. Goldman, H. V. Guliyev, V. S. Guliyev, P. Jain, R. Mustafaev, E. D. Nursultanov, R. Oinarov, A. Serbetci, T. V. Tararykova. Part I of the survey contains discussion of the definition and basic properties of the local and global general Morrey-type spaces, of embedding theorems, and of the boundedness properties of the maximal operator. Part II of the survey will contain discussion of boundedness properties of the fractional maximal operator, Riesz potential, singular integral operator, commutators of singular integral operator, Hardy operator. It will also contain discussion of interpolation theorems, of methods of proofs and of open problems.
@article{EMJ_2012_3_3_a2,
     author = {V. I. Burenkov},
     title = {Recent progress in studying the boundedness of classical operators of real analysis in general {Morrey-type} {spaces.~I}},
     journal = {Eurasian mathematical journal},
     pages = {11--32},
     publisher = {mathdoc},
     volume = {3},
     number = {3},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2012_3_3_a2/}
}
TY  - JOUR
AU  - V. I. Burenkov
TI  - Recent progress in studying the boundedness of classical operators of real analysis in general Morrey-type spaces.~I
JO  - Eurasian mathematical journal
PY  - 2012
SP  - 11
EP  - 32
VL  - 3
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2012_3_3_a2/
LA  - en
ID  - EMJ_2012_3_3_a2
ER  - 
%0 Journal Article
%A V. I. Burenkov
%T Recent progress in studying the boundedness of classical operators of real analysis in general Morrey-type spaces.~I
%J Eurasian mathematical journal
%D 2012
%P 11-32
%V 3
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2012_3_3_a2/
%G en
%F EMJ_2012_3_3_a2
V. I. Burenkov. Recent progress in studying the boundedness of classical operators of real analysis in general Morrey-type spaces.~I. Eurasian mathematical journal, Tome 3 (2012) no. 3, pp. 11-32. http://geodesic.mathdoc.fr/item/EMJ_2012_3_3_a2/

[1] A. Akbulut, I. Ekincioglu, A. Serbetci, T. Tararykova, “Boundedness of the anisotropic fractional maximal operator in anisotropic local Morrey-type spaces”, Eurasian Mathematical Journal, 2:2 (2011), 5–30 | MR | Zbl

[2] v. 1, 2, Wiley, 1979 | MR | Zbl | Zbl

[3] V. I. Burenkov, Sobolev spaces on domains, B. G. Teubner, Stuttgart-Leipzig, 1998 | MR | Zbl

[4] V. I. Burenkov, “Sharp estimates for integrals over small intervals for functions possessing some smoothness”, Progress in Analysis, Proceedings of the 3rd ISAAC Congress, World Scientific, New Jersey–London–Singapore–Hong Kong, 2003, 45–56 | DOI | MR

[5] V. I. Burenkov, V. S. Guliyev, A. Serbetci, T. V. Tararykova, “Necessary and sufficient conditions for the boundedness of genuine singular integrals in local Morrey-type spaces”, Eurasian Mathematical Journal, 1:1 (2010), 32–53 | MR | Zbl

[6] V. I. Burenkov, A. Gogatishvili, V. S. Guliyev, R. Mustafaev, “Boundedness of the fractional maximal operator in local Morrey-type spaces”, Complex Analysis and Elliptic Equations, 55:8–10 (2010), 739–758 | DOI | MR | Zbl

[7] V. I. Burenkov, M. L. Goldman, “Necessary and sufficient conditions for boundedness of the maximal operator from Lebesgue spaces to Morrey-type spaces”, Mathematical Inequalities and Applications (to appear)

[8] Russian Acad. Sci. Dokl. Math., 68 (2003), 107–110 | MR | Zbl

[9] V. I. Burenkov, H. V. Guliyev, “Necessary and sufficient conditions for boundedness of the maximal operator in the local Morrey-type spaces”, Studia Mathematica, 163:2 (2004), 157–176 | DOI | MR | Zbl

[10] Acad. Sci. Dokl. Math., 74 (2006), 540–544 | DOI | MR | Zbl

[11] V. I. Burenkov, H. V. Guliyev, V. S. Guliyev, “Necessary and sufficient conditions for boundedness of the fractional maximal operator in the local Morrey-type spaces”, Journal of Computational and Applied Mathematics, 208:1 (2007), 280–301 | DOI | MR | Zbl

[12] V. I. Burenkov, P. Jain, T. V. Tararykova, “On boundedness of the Hardy operator in Morrey-type spaces”, Eurasian Mathematical Journal, 2:1 (2011), 52–80 | MR | Zbl

[13] V. I. Burenkov, A. Senouci, “On integral inequalities involving differences”, Journal of Computational and Applied Mathematics, 171 (2004), 141–149 | DOI | MR | Zbl

[14] F. Chiarenza, M. Frasca, “Morrey spaces and Hardy–Littlewood maximal function”, Rend. Math., 7 (1987), 273–279 | MR | Zbl

[15] D. Cruz-Uribe, A. Fiorenza, “Endpoint estimates and weighted norm inequalities for commutators of fractional integrals”, Publ. Mat., 47:1 (2003), 103–131 | DOI | MR | Zbl

[16] D. Cruz-Uribe, C. Perez, “Sharp two-weight, weak-type norm inequalities for singular integral operators”, Math. Res. Let., 6 (1999), 417–428 | DOI | MR

[17] I. Genebashvili, A. Gogatishvili, V. Kokilashvili, M. Krbec, Weight theory for integral transforms on spaces of homogeneous type, Pitman Monographs and Surveys in Pure and Applied Mathematics, 92, Longman, 1998 | MR | Zbl

[18] P. Grivard, Elliptic Problems in Nonsmooth Domains, Monographs and Studies in Math., 25, Pitman, Boston, 1985

[19] V. S. Guliyev, Integral operators on function spaces on the homogeneous groups and on domains in $\mathbb R^n$, DSci. dissertation, Mat. Inst. Steklov, Moscow, 1994, 329 pp. (in Russian)

[20] V. S. Guliyev, Function spaces, integral operators and two weighted inequalities on homogeneous groups. Some applications, Baku, 1999 (in Russian)

[21] V. S. Guliyev, “Generalized weighted Morrey spaces and higher order commutators of sublinear operators”, Eurasian Mathematical Journal, 3:3 (2012), 33–61 | MR | Zbl

[22] V. S. Guliyev, R. Ch. Mustafayev, “Integral operators of potential type in spaces of homogeneous type”, Doklady Ross. Akad. Nauk, 354:6 (1997), 730–732 (Russian) | MR

[23] V. S. Guliyev, R. Ch. Mustafayev, “Fractional integrals in spaces of functions defined on spaces of homogeneous type”, Anal. Math., 24:3 (1998), 181–200 (Russian) | DOI | MR

[24] B. Kuttner, “Some theorems on fractional derivatives”, Proc. London Math. Soc., 3:2 (1953), 480–497 | DOI | MR | Zbl

[25] Yu. V. Kuznetsov, “On pasting functions in the space $W^r_{p,\theta}$”, Trudy Math. Inst Steklov, 140, 1976, 191–200 | MR | Zbl

[26] P. G. Lemarié-Rieusset, “The role of Morrey spaces in the study of Navier–Stokes and Euler equations”, Eurasian Mathematical Journal, 3:3 (2012), 62–93 | MR | Zbl

[27] T. Mizuhara, “Boundedness of some classical operators on generalized Morrey spaces”, Harmonic Analisis, ICM 90 Satellite Proceedings, ed. S. Igari, Springer-Verlag, Tokyo, 1991, 183–189 | MR

[28] C. B. Morrey, “On the solutions of quasi-linear elliptic partial differential equations”, Trans. Amer. Math. Soc., 43 (1938), 126–166 | DOI | MR | Zbl

[29] E. Nakai, “Hardy–Littlewood maximal operator, singular integral operators and Riesz potentials on generalized Morrey spaces”, Math. Nachr., 166 (1994), 95–103 | DOI | MR | Zbl

[30] E. Nakai, “Recent topics of fractional integrals”, Sugaku Expositions, American Mathematical Society, 20:2 (2007), 215–235 | MR | Zbl

[31] S. M. Nikol'skii, “On a property of the $H^r_p$ classes”, Ann. Univ. Sci. Budapest, Sect. Math., 3–4 (1960/1961), 205–216 | MR

[32] Springer-Verlag, 1975 | MR | Zbl

[33] J. Peetre, “On the theory of $\mathcal L^{p,\lambda}$ spaces”, Journal Funct. Analysis, 4 (1969), 71–87 | DOI | MR | Zbl

[34] M. A. Ragusa, “Operators in Morrey type spaces and applications”, Eurasian Mathematical Journal, 3:3 (2012), 94–109 | MR | Zbl

[35] E. Sawyer, “Two weight norm inequalities for certain maximal and integral operators”, Harmonic analysis (Minneapolis, Minn., 1981), Lecture Notes in Math., 908, 1982, 102–127 | DOI | MR | Zbl

[36] W. Sickel, “Smoothness spaces related to morrey spaces – a survey. I”, Eurasian Mathematical Journal, 3:3 (2012), 110–149 | Zbl

[37] V. D. Stepanov, “Weighted Hardy inequalities for increasing functions”, Canadian Journal Math., 45 (1993), 104–116 | DOI | MR | Zbl

[38] V. D. Stepanov, “The weighted Hardy's inequalities for nonincreasing functions”, Trans. Amer. Math. Soc., 338:1 (1993), 173–186 | MR | Zbl

[39] G. N. Yakovlev, “Boundary properties of functions in the class $W^l_p$ on domains with corner points”, Doklady Ac. Sci. USSR, 70:1 (1961), 73-76

[40] G. N. Yakovlev, “On traces of functions in the space $W^l_p$ on piecewise smooth surfaces”, Matem. Sbornik, 74(116):4 (1967), 526–543 | MR | Zbl