Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2012_3_3_a2, author = {V. I. Burenkov}, title = {Recent progress in studying the boundedness of classical operators of real analysis in general {Morrey-type} {spaces.~I}}, journal = {Eurasian mathematical journal}, pages = {11--32}, publisher = {mathdoc}, volume = {3}, number = {3}, year = {2012}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2012_3_3_a2/} }
TY - JOUR AU - V. I. Burenkov TI - Recent progress in studying the boundedness of classical operators of real analysis in general Morrey-type spaces.~I JO - Eurasian mathematical journal PY - 2012 SP - 11 EP - 32 VL - 3 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/EMJ_2012_3_3_a2/ LA - en ID - EMJ_2012_3_3_a2 ER -
%0 Journal Article %A V. I. Burenkov %T Recent progress in studying the boundedness of classical operators of real analysis in general Morrey-type spaces.~I %J Eurasian mathematical journal %D 2012 %P 11-32 %V 3 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/EMJ_2012_3_3_a2/ %G en %F EMJ_2012_3_3_a2
V. I. Burenkov. Recent progress in studying the boundedness of classical operators of real analysis in general Morrey-type spaces.~I. Eurasian mathematical journal, Tome 3 (2012) no. 3, pp. 11-32. http://geodesic.mathdoc.fr/item/EMJ_2012_3_3_a2/
[1] A. Akbulut, I. Ekincioglu, A. Serbetci, T. Tararykova, “Boundedness of the anisotropic fractional maximal operator in anisotropic local Morrey-type spaces”, Eurasian Mathematical Journal, 2:2 (2011), 5–30 | MR | Zbl
[2] v. 1, 2, Wiley, 1979 | MR | Zbl | Zbl
[3] V. I. Burenkov, Sobolev spaces on domains, B. G. Teubner, Stuttgart-Leipzig, 1998 | MR | Zbl
[4] V. I. Burenkov, “Sharp estimates for integrals over small intervals for functions possessing some smoothness”, Progress in Analysis, Proceedings of the 3rd ISAAC Congress, World Scientific, New Jersey–London–Singapore–Hong Kong, 2003, 45–56 | DOI | MR
[5] V. I. Burenkov, V. S. Guliyev, A. Serbetci, T. V. Tararykova, “Necessary and sufficient conditions for the boundedness of genuine singular integrals in local Morrey-type spaces”, Eurasian Mathematical Journal, 1:1 (2010), 32–53 | MR | Zbl
[6] V. I. Burenkov, A. Gogatishvili, V. S. Guliyev, R. Mustafaev, “Boundedness of the fractional maximal operator in local Morrey-type spaces”, Complex Analysis and Elliptic Equations, 55:8–10 (2010), 739–758 | DOI | MR | Zbl
[7] V. I. Burenkov, M. L. Goldman, “Necessary and sufficient conditions for boundedness of the maximal operator from Lebesgue spaces to Morrey-type spaces”, Mathematical Inequalities and Applications (to appear)
[8] Russian Acad. Sci. Dokl. Math., 68 (2003), 107–110 | MR | Zbl
[9] V. I. Burenkov, H. V. Guliyev, “Necessary and sufficient conditions for boundedness of the maximal operator in the local Morrey-type spaces”, Studia Mathematica, 163:2 (2004), 157–176 | DOI | MR | Zbl
[10] Acad. Sci. Dokl. Math., 74 (2006), 540–544 | DOI | MR | Zbl
[11] V. I. Burenkov, H. V. Guliyev, V. S. Guliyev, “Necessary and sufficient conditions for boundedness of the fractional maximal operator in the local Morrey-type spaces”, Journal of Computational and Applied Mathematics, 208:1 (2007), 280–301 | DOI | MR | Zbl
[12] V. I. Burenkov, P. Jain, T. V. Tararykova, “On boundedness of the Hardy operator in Morrey-type spaces”, Eurasian Mathematical Journal, 2:1 (2011), 52–80 | MR | Zbl
[13] V. I. Burenkov, A. Senouci, “On integral inequalities involving differences”, Journal of Computational and Applied Mathematics, 171 (2004), 141–149 | DOI | MR | Zbl
[14] F. Chiarenza, M. Frasca, “Morrey spaces and Hardy–Littlewood maximal function”, Rend. Math., 7 (1987), 273–279 | MR | Zbl
[15] D. Cruz-Uribe, A. Fiorenza, “Endpoint estimates and weighted norm inequalities for commutators of fractional integrals”, Publ. Mat., 47:1 (2003), 103–131 | DOI | MR | Zbl
[16] D. Cruz-Uribe, C. Perez, “Sharp two-weight, weak-type norm inequalities for singular integral operators”, Math. Res. Let., 6 (1999), 417–428 | DOI | MR
[17] I. Genebashvili, A. Gogatishvili, V. Kokilashvili, M. Krbec, Weight theory for integral transforms on spaces of homogeneous type, Pitman Monographs and Surveys in Pure and Applied Mathematics, 92, Longman, 1998 | MR | Zbl
[18] P. Grivard, Elliptic Problems in Nonsmooth Domains, Monographs and Studies in Math., 25, Pitman, Boston, 1985
[19] V. S. Guliyev, Integral operators on function spaces on the homogeneous groups and on domains in $\mathbb R^n$, DSci. dissertation, Mat. Inst. Steklov, Moscow, 1994, 329 pp. (in Russian)
[20] V. S. Guliyev, Function spaces, integral operators and two weighted inequalities on homogeneous groups. Some applications, Baku, 1999 (in Russian)
[21] V. S. Guliyev, “Generalized weighted Morrey spaces and higher order commutators of sublinear operators”, Eurasian Mathematical Journal, 3:3 (2012), 33–61 | MR | Zbl
[22] V. S. Guliyev, R. Ch. Mustafayev, “Integral operators of potential type in spaces of homogeneous type”, Doklady Ross. Akad. Nauk, 354:6 (1997), 730–732 (Russian) | MR
[23] V. S. Guliyev, R. Ch. Mustafayev, “Fractional integrals in spaces of functions defined on spaces of homogeneous type”, Anal. Math., 24:3 (1998), 181–200 (Russian) | DOI | MR
[24] B. Kuttner, “Some theorems on fractional derivatives”, Proc. London Math. Soc., 3:2 (1953), 480–497 | DOI | MR | Zbl
[25] Yu. V. Kuznetsov, “On pasting functions in the space $W^r_{p,\theta}$”, Trudy Math. Inst Steklov, 140, 1976, 191–200 | MR | Zbl
[26] P. G. Lemarié-Rieusset, “The role of Morrey spaces in the study of Navier–Stokes and Euler equations”, Eurasian Mathematical Journal, 3:3 (2012), 62–93 | MR | Zbl
[27] T. Mizuhara, “Boundedness of some classical operators on generalized Morrey spaces”, Harmonic Analisis, ICM 90 Satellite Proceedings, ed. S. Igari, Springer-Verlag, Tokyo, 1991, 183–189 | MR
[28] C. B. Morrey, “On the solutions of quasi-linear elliptic partial differential equations”, Trans. Amer. Math. Soc., 43 (1938), 126–166 | DOI | MR | Zbl
[29] E. Nakai, “Hardy–Littlewood maximal operator, singular integral operators and Riesz potentials on generalized Morrey spaces”, Math. Nachr., 166 (1994), 95–103 | DOI | MR | Zbl
[30] E. Nakai, “Recent topics of fractional integrals”, Sugaku Expositions, American Mathematical Society, 20:2 (2007), 215–235 | MR | Zbl
[31] S. M. Nikol'skii, “On a property of the $H^r_p$ classes”, Ann. Univ. Sci. Budapest, Sect. Math., 3–4 (1960/1961), 205–216 | MR
[32] Springer-Verlag, 1975 | MR | Zbl
[33] J. Peetre, “On the theory of $\mathcal L^{p,\lambda}$ spaces”, Journal Funct. Analysis, 4 (1969), 71–87 | DOI | MR | Zbl
[34] M. A. Ragusa, “Operators in Morrey type spaces and applications”, Eurasian Mathematical Journal, 3:3 (2012), 94–109 | MR | Zbl
[35] E. Sawyer, “Two weight norm inequalities for certain maximal and integral operators”, Harmonic analysis (Minneapolis, Minn., 1981), Lecture Notes in Math., 908, 1982, 102–127 | DOI | MR | Zbl
[36] W. Sickel, “Smoothness spaces related to morrey spaces – a survey. I”, Eurasian Mathematical Journal, 3:3 (2012), 110–149 | Zbl
[37] V. D. Stepanov, “Weighted Hardy inequalities for increasing functions”, Canadian Journal Math., 45 (1993), 104–116 | DOI | MR | Zbl
[38] V. D. Stepanov, “The weighted Hardy's inequalities for nonincreasing functions”, Trans. Amer. Math. Soc., 338:1 (1993), 173–186 | MR | Zbl
[39] G. N. Yakovlev, “Boundary properties of functions in the class $W^l_p$ on domains with corner points”, Doklady Ac. Sci. USSR, 70:1 (1961), 73-76
[40] G. N. Yakovlev, “On traces of functions in the space $W^l_p$ on piecewise smooth surfaces”, Matem. Sbornik, 74(116):4 (1967), 526–543 | MR | Zbl