Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2012_3_2_a2, author = {A. R. Alimov}, title = {Monotone path-connectedness of $R$-weakly convex sets in spaces with linear ball embedding}, journal = {Eurasian mathematical journal}, pages = {21--30}, publisher = {mathdoc}, volume = {3}, number = {2}, year = {2012}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2012_3_2_a2/} }
A. R. Alimov. Monotone path-connectedness of $R$-weakly convex sets in spaces with linear ball embedding. Eurasian mathematical journal, Tome 3 (2012) no. 2, pp. 21-30. http://geodesic.mathdoc.fr/item/EMJ_2012_3_2_a2/
[1] A. R. Alimov, “On the structure of the complements of Chebyshev sets”, Funct. Anal. Appl., 35:3 (2001), 176–182 | DOI | MR | Zbl
[2] A. R. Alimov, “Monotone path-connectedness of Chebyshev sets in the space $C(Q)$”, Sbornik: Mathematics, 197:9 (2006), 1259–1272 | DOI | MR | Zbl
[3] A. R. Alimov, “A monotone path connected Chebyshev set is a sun”, Math. Notes, 91:2 (2012), 290–292 | DOI | MR | Zbl
[4] A. R. Alimov, “Monotone path-connectedness of $R$-weakly convex sets in the space $C(Q)$”, J. Math. Sci., 185:3 (2012), 360–366 | DOI | MR | Zbl
[5] A. R. Alimov, V. Yu. Protasov, “Separation of convex sets by extreme hyperplanes”, Fundam. Prikl. Mat., 17:4 (2012), 3–12 | MR
[6] A. R. Alimov, “Chebyshev set's complement”, East J. Approx., 2:2 (1996), 215–232 | MR | Zbl
[7] M. V. Balashov, G. E. Ivanov, “Weakly convex and proximally smooth sets in Banach spaces”, Izvestiya: Mathematics, 73:3 (2009), 455–499 | DOI | MR | Zbl
[8] K. Bezdek, T. Bisztriczky, K. Böröczky, “Edge-antipodal 3-polytopes”, Combinatorial and Computational Geometry, Mathematical Sciences Research Institute Publications, 52, eds. J. E. Goodman et al., 2005, 129–134 | MR | Zbl
[9] T. Bisztriczky, K. Böröczky, “On edge-antipodal $d$-polytopes”, Period. Math. Hung., 57:2 (2008), 131–141 | DOI | MR | Zbl
[10] K. Böröczky (Jr.), Finite packing and covering, Cambridge University Press, 2004 | MR | Zbl
[11] B. Brosowski, F. Deutsch, J. Lambert, P. D. Morris, “Chebychev sets which are not suns”, Math. Ann., 212:1 (1974), 89–101 | DOI | MR | Zbl
[12] A. L. Brown, “Suns in normed linear spaces which are finite-dimensional”, Math. Ann., 279 (1987), 87–101 | DOI | MR | Zbl
[13] A. L. Brown, “Suns in polyhedral spaces”, Seminar of Mathem. Analysis (Univ. Malaga and Seville, Spain, Sept. 2002 – Feb. 2003), eds. D. G. Àlvarez, G. Lopez Acedo, R. V. Caro, Universidad de Sevilla, Sevilla, 2003, 139–146 | MR | Zbl
[14] B. Csikós, “Edge-antipodal polytopes – a proof of the Talata conjecture”, Discrete Geometry, ed. A. Bezdek, Marcell Dekker, New York–Basel, 2003, 201–205 | DOI | MR | Zbl
[15] L. Danzer, B. Grünbaum, “Über zwei Probleme bezüglich konvexer Körper von P. Erdős und von V. L. Klee”, Math. Z., 79 (1962), 95–99 | DOI | MR | Zbl
[16] C. Franchetti, S. Roversi, Suns, $M$-connected sets and $P$-acyclic sets in Banach spaces, Preprint no. 50139, Instituto di Matematica Applicata “G. Sansone”, 1988, 29 pp. | MR
[17] G. E. Ivanov, “Weak convexity in the senses of Vial and Efimov–Stechkin”, Izvestiya: Mathematics, 69:6 (2005), 1133–1135 | DOI | MR | Zbl
[18] G. E. Ivanov, Weakly convex sets and functions. Theory and applications, Fizmatlit, Moscow, 2006 (in Russian)
[19] H. Martini, K. J. Swanepoel, P. O. de Wet, “Absorbing angles, Steiner minimal trees, and antipodality”, J. Optim. Theory Appl., 143 (2009), 149–157 | DOI | MR | Zbl
[20] A. Schürmann, K. Swanepoel, “Three-dimensional antipodal sets and norm-equilateral sets”, Pacific J. Math., 228:2 (2006), 349–370 | DOI | MR | Zbl
[21] K. Swanepoel, “Upper bounds for edge-antipodal and subequilateral polytopes”, Period. Math. Hung., 54:1 (2007), 99–106 | DOI | MR | Zbl
[22] I. Talata, “On extensive subsets of convex bodies”, Period. Math. Hungar., 38 (1999), 231–246 | DOI | MR | Zbl
[23] J.-Ph. Vial, “Strong and weak convexity of sets and functions”, Math. Oper. Res., 8:2 (1983), 231–259 | DOI | MR | Zbl
[24] L. P. Vlasov, “Approximative properties of sets in normed linear spaces”, Russian Math. Surveys, 28:6 (1973), 1–66 | DOI | MR | Zbl