Monotone path-connectedness of $R$-weakly convex sets in spaces with linear ball embedding
Eurasian mathematical journal, Tome 3 (2012) no. 2, pp. 21-30

Voir la notice de l'article provenant de la source Math-Net.Ru

A subset $M$ of a normed linear space $X$ is called $R$-weakly convex ($R>0$) if $(D_R(x,y)\setminus\{x,y\})\cap M\ne\varnothing$ for any $x,y\in M$ satisfying $0\|x-y\|2R$. Here, $D_R(x,y)$ is the intersection of all closed balls of radius $R$ containing $x,y$. The paper is concerned with the connectedness of $R$-weakly convex subsets of Banach spaces satisfying the linear ball embedding condition $\mathrm{(BEL)}$ (note that $C(Q)$ and $\ell^1(n)\in\mathrm{(BEL)}$). An $R$-weakly convex subset $M$ of a space $X\in\mathrm{(BEL)}$ is shown to be mconnected (Menger-connected) under the natural condition on the spread of points in $M$. A closed subset $M$ of a finite-dimensional space $X\in\mathrm{(BEL)}$ is shown to be $R$-weakly convex with some $R>0$ if and only if $M$ is a disjoint union of monotone path-connected suns in $X$, the Hausdorff distance between any connected components of $M$ being less than $2R$. In passing we obtain a characterization of three-dimensional spaces with subequilateral unit ball.
@article{EMJ_2012_3_2_a2,
     author = {A. R. Alimov},
     title = {Monotone path-connectedness of $R$-weakly convex sets in spaces with linear ball embedding},
     journal = {Eurasian mathematical journal},
     pages = {21--30},
     publisher = {mathdoc},
     volume = {3},
     number = {2},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2012_3_2_a2/}
}
TY  - JOUR
AU  - A. R. Alimov
TI  - Monotone path-connectedness of $R$-weakly convex sets in spaces with linear ball embedding
JO  - Eurasian mathematical journal
PY  - 2012
SP  - 21
EP  - 30
VL  - 3
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2012_3_2_a2/
LA  - en
ID  - EMJ_2012_3_2_a2
ER  - 
%0 Journal Article
%A A. R. Alimov
%T Monotone path-connectedness of $R$-weakly convex sets in spaces with linear ball embedding
%J Eurasian mathematical journal
%D 2012
%P 21-30
%V 3
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2012_3_2_a2/
%G en
%F EMJ_2012_3_2_a2
A. R. Alimov. Monotone path-connectedness of $R$-weakly convex sets in spaces with linear ball embedding. Eurasian mathematical journal, Tome 3 (2012) no. 2, pp. 21-30. http://geodesic.mathdoc.fr/item/EMJ_2012_3_2_a2/