Monotone path-connectedness of $R$-weakly convex sets in spaces with linear ball embedding
Eurasian mathematical journal, Tome 3 (2012) no. 2, pp. 21-30.

Voir la notice de l'article provenant de la source Math-Net.Ru

A subset $M$ of a normed linear space $X$ is called $R$-weakly convex ($R>0$) if $(D_R(x,y)\setminus\{x,y\})\cap M\ne\varnothing$ for any $x,y\in M$ satisfying $0\|x-y\|2R$. Here, $D_R(x,y)$ is the intersection of all closed balls of radius $R$ containing $x,y$. The paper is concerned with the connectedness of $R$-weakly convex subsets of Banach spaces satisfying the linear ball embedding condition $\mathrm{(BEL)}$ (note that $C(Q)$ and $\ell^1(n)\in\mathrm{(BEL)}$). An $R$-weakly convex subset $M$ of a space $X\in\mathrm{(BEL)}$ is shown to be mconnected (Menger-connected) under the natural condition on the spread of points in $M$. A closed subset $M$ of a finite-dimensional space $X\in\mathrm{(BEL)}$ is shown to be $R$-weakly convex with some $R>0$ if and only if $M$ is a disjoint union of monotone path-connected suns in $X$, the Hausdorff distance between any connected components of $M$ being less than $2R$. In passing we obtain a characterization of three-dimensional spaces with subequilateral unit ball.
@article{EMJ_2012_3_2_a2,
     author = {A. R. Alimov},
     title = {Monotone path-connectedness of $R$-weakly convex sets in spaces with linear ball embedding},
     journal = {Eurasian mathematical journal},
     pages = {21--30},
     publisher = {mathdoc},
     volume = {3},
     number = {2},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2012_3_2_a2/}
}
TY  - JOUR
AU  - A. R. Alimov
TI  - Monotone path-connectedness of $R$-weakly convex sets in spaces with linear ball embedding
JO  - Eurasian mathematical journal
PY  - 2012
SP  - 21
EP  - 30
VL  - 3
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2012_3_2_a2/
LA  - en
ID  - EMJ_2012_3_2_a2
ER  - 
%0 Journal Article
%A A. R. Alimov
%T Monotone path-connectedness of $R$-weakly convex sets in spaces with linear ball embedding
%J Eurasian mathematical journal
%D 2012
%P 21-30
%V 3
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2012_3_2_a2/
%G en
%F EMJ_2012_3_2_a2
A. R. Alimov. Monotone path-connectedness of $R$-weakly convex sets in spaces with linear ball embedding. Eurasian mathematical journal, Tome 3 (2012) no. 2, pp. 21-30. http://geodesic.mathdoc.fr/item/EMJ_2012_3_2_a2/

[1] A. R. Alimov, “On the structure of the complements of Chebyshev sets”, Funct. Anal. Appl., 35:3 (2001), 176–182 | DOI | MR | Zbl

[2] A. R. Alimov, “Monotone path-connectedness of Chebyshev sets in the space $C(Q)$”, Sbornik: Mathematics, 197:9 (2006), 1259–1272 | DOI | MR | Zbl

[3] A. R. Alimov, “A monotone path connected Chebyshev set is a sun”, Math. Notes, 91:2 (2012), 290–292 | DOI | MR | Zbl

[4] A. R. Alimov, “Monotone path-connectedness of $R$-weakly convex sets in the space $C(Q)$”, J. Math. Sci., 185:3 (2012), 360–366 | DOI | MR | Zbl

[5] A. R. Alimov, V. Yu. Protasov, “Separation of convex sets by extreme hyperplanes”, Fundam. Prikl. Mat., 17:4 (2012), 3–12 | MR

[6] A. R. Alimov, “Chebyshev set's complement”, East J. Approx., 2:2 (1996), 215–232 | MR | Zbl

[7] M. V. Balashov, G. E. Ivanov, “Weakly convex and proximally smooth sets in Banach spaces”, Izvestiya: Mathematics, 73:3 (2009), 455–499 | DOI | MR | Zbl

[8] K. Bezdek, T. Bisztriczky, K. Böröczky, “Edge-antipodal 3-polytopes”, Combinatorial and Computational Geometry, Mathematical Sciences Research Institute Publications, 52, eds. J. E. Goodman et al., 2005, 129–134 | MR | Zbl

[9] T. Bisztriczky, K. Böröczky, “On edge-antipodal $d$-polytopes”, Period. Math. Hung., 57:2 (2008), 131–141 | DOI | MR | Zbl

[10] K. Böröczky (Jr.), Finite packing and covering, Cambridge University Press, 2004 | MR | Zbl

[11] B. Brosowski, F. Deutsch, J. Lambert, P. D. Morris, “Chebychev sets which are not suns”, Math. Ann., 212:1 (1974), 89–101 | DOI | MR | Zbl

[12] A. L. Brown, “Suns in normed linear spaces which are finite-dimensional”, Math. Ann., 279 (1987), 87–101 | DOI | MR | Zbl

[13] A. L. Brown, “Suns in polyhedral spaces”, Seminar of Mathem. Analysis (Univ. Malaga and Seville, Spain, Sept. 2002 – Feb. 2003), eds. D. G. Àlvarez, G. Lopez Acedo, R. V. Caro, Universidad de Sevilla, Sevilla, 2003, 139–146 | MR | Zbl

[14] B. Csikós, “Edge-antipodal polytopes – a proof of the Talata conjecture”, Discrete Geometry, ed. A. Bezdek, Marcell Dekker, New York–Basel, 2003, 201–205 | DOI | MR | Zbl

[15] L. Danzer, B. Grünbaum, “Über zwei Probleme bezüglich konvexer Körper von P. Erdős und von V. L. Klee”, Math. Z., 79 (1962), 95–99 | DOI | MR | Zbl

[16] C. Franchetti, S. Roversi, Suns, $M$-connected sets and $P$-acyclic sets in Banach spaces, Preprint no. 50139, Instituto di Matematica Applicata “G. Sansone”, 1988, 29 pp. | MR

[17] G. E. Ivanov, “Weak convexity in the senses of Vial and Efimov–Stechkin”, Izvestiya: Mathematics, 69:6 (2005), 1133–1135 | DOI | MR | Zbl

[18] G. E. Ivanov, Weakly convex sets and functions. Theory and applications, Fizmatlit, Moscow, 2006 (in Russian)

[19] H. Martini, K. J. Swanepoel, P. O. de Wet, “Absorbing angles, Steiner minimal trees, and antipodality”, J. Optim. Theory Appl., 143 (2009), 149–157 | DOI | MR | Zbl

[20] A. Schürmann, K. Swanepoel, “Three-dimensional antipodal sets and norm-equilateral sets”, Pacific J. Math., 228:2 (2006), 349–370 | DOI | MR | Zbl

[21] K. Swanepoel, “Upper bounds for edge-antipodal and subequilateral polytopes”, Period. Math. Hung., 54:1 (2007), 99–106 | DOI | MR | Zbl

[22] I. Talata, “On extensive subsets of convex bodies”, Period. Math. Hungar., 38 (1999), 231–246 | DOI | MR | Zbl

[23] J.-Ph. Vial, “Strong and weak convexity of sets and functions”, Math. Oper. Res., 8:2 (1983), 231–259 | DOI | MR | Zbl

[24] L. P. Vlasov, “Approximative properties of sets in normed linear spaces”, Russian Math. Surveys, 28:6 (1973), 1–66 | DOI | MR | Zbl