Definition of the complex Monge-Amp\`ere operator for arbitrary plurisubharmonic functions
Eurasian mathematical journal, Tome 3 (2012) no. 1, pp. 97-109.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider the problem of definition of the Monge-Ampère operator for an arbitrary plurisubharmonic function. The paper has a survey character; in it we discuss on the results related to this area. We give one construction of the definition of the Monge-Ampère operator, which will then be applied to maximal plurisubharmonic functions.
@article{EMJ_2012_3_1_a7,
     author = {A. Sadullaev},
     title = {Definition of the complex {Monge-Amp\`ere} operator for arbitrary plurisubharmonic functions},
     journal = {Eurasian mathematical journal},
     pages = {97--109},
     publisher = {mathdoc},
     volume = {3},
     number = {1},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2012_3_1_a7/}
}
TY  - JOUR
AU  - A. Sadullaev
TI  - Definition of the complex Monge-Amp\`ere operator for arbitrary plurisubharmonic functions
JO  - Eurasian mathematical journal
PY  - 2012
SP  - 97
EP  - 109
VL  - 3
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2012_3_1_a7/
LA  - en
ID  - EMJ_2012_3_1_a7
ER  - 
%0 Journal Article
%A A. Sadullaev
%T Definition of the complex Monge-Amp\`ere operator for arbitrary plurisubharmonic functions
%J Eurasian mathematical journal
%D 2012
%P 97-109
%V 3
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2012_3_1_a7/
%G en
%F EMJ_2012_3_1_a7
A. Sadullaev. Definition of the complex Monge-Amp\`ere operator for arbitrary plurisubharmonic functions. Eurasian mathematical journal, Tome 3 (2012) no. 1, pp. 97-109. http://geodesic.mathdoc.fr/item/EMJ_2012_3_1_a7/

[1] H.J. Bremermann, “On a generalized Dirichlet problem for plurisubharmonic functions and pseudoconvex domains. Characterization of Silov boundaries”, Trans. Amer. Math. Soc., 91:2 (1959), 246–276 | MR | Zbl

[2] Z. Błocki, “Estimates for the complex Monge-Ampère operator”, Bull. Polish Acad. Sci. Math., 41 (1993), 151–157 | MR

[3] Z. Błocki, “The domain of definition of the complex Monge-Ampère operator”, Amer. J. Math., 128:2 (2006), 519–530 | DOI | MR

[4] Z. Błocki, “A note on maximal plurisubharmonic functions”, Uzbek Mathematical Journal, 2009, no. 1, 28–32 | MR

[5] E. Bedford, “Survey of pluripotential theory”, Several Complex Variables, Math. Notes, 38, Princeton Univ. Press, Princeton, NJ, 1993, 48–97 | MR

[6] E. Bedford and B.A. Taylor, “The Dirichlet problem for a complex Monge-Ampère equations”, Invent. Math., 37:1 (1976), 1–44 | DOI | MR | Zbl

[7] E. Bedford and B.A. Taylor, “A new capacity for plurisubharmonic functions”, Acta Math, 149:1–2 (1982), 1–40 | DOI | MR | Zbl

[8] U. Cegrell, “Sums of continuous plurisubharmonic functions and the complex Monge-Ampère operator in $\mathbb C^n$”, Math. Z., 193 (1986), 373–380 | DOI | MR | Zbl

[9] U. Cegrell, “The general definition of the complex Monge-Ampère operator”, Ann. Inst. Fourier, 54 (2004), 159–179 | DOI | MR

[10] U. Cegrell, “Maximal plurisubharmonic functions”, Uzbek Math. J., 2009, no. 1, 10–16 | MR

[11] U. Cegrell, S. Kolodziej, A. Zeriahi, “Subextension of plurisubharmonic functions with weak singularities”, Math. Z., 250 (2005), 7–22 | DOI | MR | Zbl

[12] S.S. Chern, H. Levine, L. Nirenberg, “Intrinsic norms on a complex manifold”, Global analysis paper in honor of Kodaira, University of Tokyo Press, 1969, 119–139 | MR

[13] D. Coman, V. Guedj, A. Zeriahi, Domains of definition of Monge-Ampère operators on compact Kahler manifolds, arXiv: 0705.4529v1 | MR

[14] J.-P. Demailly, “Measures de Monge-Ampère et measures Plurisousharmoniques”, Math. Z., 194 (1987), 519–564 | DOI | MR | Zbl

[15] H. Federer, Geometric measure theory, Springer, Berlin, 1969 | MR

[16] V. Guedj and A. Zeriahi, The weighted Monge-Amp??ere energy of quasiplurisubharmonic functions, arXiv: math.CV/0612630v1

[17] N. Kerzman, “A Monge-Ampère equation in complex analysis”, Proceedings of the symposium on pure mathematics of the American Mathematical Society, 30, no. 1, Providence, RI, 1977, 161–167 | DOI | MR | Zbl

[18] C.O. Kiselman, “Sur la definition de l'operateur de Monge-Ampère complex”, Lecture Notes in Math., 1094, Springer-Verlag, Berlin, 1984, 139–150 | DOI | MR

[19] S. Kolodziej, “The complex Monge-Ampère equation”, Acta Math., 180 (1998), 69–117 | DOI | MR | Zbl

[20] A. Sadullaev, “The operator $(dd^cu)^n$ and the capasity of condensers”, Soviet Math. Dokl., 21:2 (1980), 387–391 | MR | Zbl

[21] A. Sadullaev, “Plurisubharmonic measures and capacities on complex manifolds”, Russian Math. Surveys, 36 (1981), 61–119 | DOI | MR | Zbl

[22] A. Sadullaev, “On a class of Psh functions”, Izv. of Uzbek Academy, 1982, no. 2, 12–15 | MR | Zbl

[23] A. Sadullaev, “Plurisubharmonic functions”, Actual problems of mathematics, 8, VINITI-Springer, 1985, 65–114 | MR