Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2012_3_1_a7, author = {A. Sadullaev}, title = {Definition of the complex {Monge-Amp\`ere} operator for arbitrary plurisubharmonic functions}, journal = {Eurasian mathematical journal}, pages = {97--109}, publisher = {mathdoc}, volume = {3}, number = {1}, year = {2012}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2012_3_1_a7/} }
TY - JOUR AU - A. Sadullaev TI - Definition of the complex Monge-Amp\`ere operator for arbitrary plurisubharmonic functions JO - Eurasian mathematical journal PY - 2012 SP - 97 EP - 109 VL - 3 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/EMJ_2012_3_1_a7/ LA - en ID - EMJ_2012_3_1_a7 ER -
A. Sadullaev. Definition of the complex Monge-Amp\`ere operator for arbitrary plurisubharmonic functions. Eurasian mathematical journal, Tome 3 (2012) no. 1, pp. 97-109. http://geodesic.mathdoc.fr/item/EMJ_2012_3_1_a7/
[1] H.J. Bremermann, “On a generalized Dirichlet problem for plurisubharmonic functions and pseudoconvex domains. Characterization of Silov boundaries”, Trans. Amer. Math. Soc., 91:2 (1959), 246–276 | MR | Zbl
[2] Z. Błocki, “Estimates for the complex Monge-Ampère operator”, Bull. Polish Acad. Sci. Math., 41 (1993), 151–157 | MR
[3] Z. Błocki, “The domain of definition of the complex Monge-Ampère operator”, Amer. J. Math., 128:2 (2006), 519–530 | DOI | MR
[4] Z. Błocki, “A note on maximal plurisubharmonic functions”, Uzbek Mathematical Journal, 2009, no. 1, 28–32 | MR
[5] E. Bedford, “Survey of pluripotential theory”, Several Complex Variables, Math. Notes, 38, Princeton Univ. Press, Princeton, NJ, 1993, 48–97 | MR
[6] E. Bedford and B.A. Taylor, “The Dirichlet problem for a complex Monge-Ampère equations”, Invent. Math., 37:1 (1976), 1–44 | DOI | MR | Zbl
[7] E. Bedford and B.A. Taylor, “A new capacity for plurisubharmonic functions”, Acta Math, 149:1–2 (1982), 1–40 | DOI | MR | Zbl
[8] U. Cegrell, “Sums of continuous plurisubharmonic functions and the complex Monge-Ampère operator in $\mathbb C^n$”, Math. Z., 193 (1986), 373–380 | DOI | MR | Zbl
[9] U. Cegrell, “The general definition of the complex Monge-Ampère operator”, Ann. Inst. Fourier, 54 (2004), 159–179 | DOI | MR
[10] U. Cegrell, “Maximal plurisubharmonic functions”, Uzbek Math. J., 2009, no. 1, 10–16 | MR
[11] U. Cegrell, S. Kolodziej, A. Zeriahi, “Subextension of plurisubharmonic functions with weak singularities”, Math. Z., 250 (2005), 7–22 | DOI | MR | Zbl
[12] S.S. Chern, H. Levine, L. Nirenberg, “Intrinsic norms on a complex manifold”, Global analysis paper in honor of Kodaira, University of Tokyo Press, 1969, 119–139 | MR
[13] D. Coman, V. Guedj, A. Zeriahi, Domains of definition of Monge-Ampère operators on compact Kahler manifolds, arXiv: 0705.4529v1 | MR
[14] J.-P. Demailly, “Measures de Monge-Ampère et measures Plurisousharmoniques”, Math. Z., 194 (1987), 519–564 | DOI | MR | Zbl
[15] H. Federer, Geometric measure theory, Springer, Berlin, 1969 | MR
[16] V. Guedj and A. Zeriahi, The weighted Monge-Amp??ere energy of quasiplurisubharmonic functions, arXiv: math.CV/0612630v1
[17] N. Kerzman, “A Monge-Ampère equation in complex analysis”, Proceedings of the symposium on pure mathematics of the American Mathematical Society, 30, no. 1, Providence, RI, 1977, 161–167 | DOI | MR | Zbl
[18] C.O. Kiselman, “Sur la definition de l'operateur de Monge-Ampère complex”, Lecture Notes in Math., 1094, Springer-Verlag, Berlin, 1984, 139–150 | DOI | MR
[19] S. Kolodziej, “The complex Monge-Ampère equation”, Acta Math., 180 (1998), 69–117 | DOI | MR | Zbl
[20] A. Sadullaev, “The operator $(dd^cu)^n$ and the capasity of condensers”, Soviet Math. Dokl., 21:2 (1980), 387–391 | MR | Zbl
[21] A. Sadullaev, “Plurisubharmonic measures and capacities on complex manifolds”, Russian Math. Surveys, 36 (1981), 61–119 | DOI | MR | Zbl
[22] A. Sadullaev, “On a class of Psh functions”, Izv. of Uzbek Academy, 1982, no. 2, 12–15 | MR | Zbl
[23] A. Sadullaev, “Plurisubharmonic functions”, Actual problems of mathematics, 8, VINITI-Springer, 1985, 65–114 | MR