On selection of infinitely differentiable solutions of a class of partially hypoelliptic equations
Eurasian mathematical journal, Tome 3 (2012) no. 1, pp. 41-62

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper the existence of a constant $\kappa_0>0$ is proved such that all solutions of a class of regular partially hypoelliptic (with respect to the hyperplane $x''=(x_2,\dots,x_n)=0$ of the space $E^n$) equations $P(D)u=0$ in the strip $\Omega_\kappa=\{(x_1,x'')=(x_1,x_2,\dots,x_n)\in E^n;\, |x_1|\kappa\}$ are infinitely differentiable when $\kappa\ge\kappa_0$ and $D^\alpha u\in L_2(\Omega_\kappa)$ for all multi-indices $\alpha=(0,\alpha'')=(0,\alpha_2,\dots,\alpha_n)$ in the Newton polyhedron of the operator $P(D)\cdot{}$.
@article{EMJ_2012_3_1_a3,
     author = {H. G. Ghazaryan},
     title = {On selection of infinitely differentiable solutions of a class of partially hypoelliptic equations},
     journal = {Eurasian mathematical journal},
     pages = {41--62},
     publisher = {mathdoc},
     volume = {3},
     number = {1},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2012_3_1_a3/}
}
TY  - JOUR
AU  - H. G. Ghazaryan
TI  - On selection of infinitely differentiable solutions of a class of partially hypoelliptic equations
JO  - Eurasian mathematical journal
PY  - 2012
SP  - 41
EP  - 62
VL  - 3
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2012_3_1_a3/
LA  - en
ID  - EMJ_2012_3_1_a3
ER  - 
%0 Journal Article
%A H. G. Ghazaryan
%T On selection of infinitely differentiable solutions of a class of partially hypoelliptic equations
%J Eurasian mathematical journal
%D 2012
%P 41-62
%V 3
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2012_3_1_a3/
%G en
%F EMJ_2012_3_1_a3
H. G. Ghazaryan. On selection of infinitely differentiable solutions of a class of partially hypoelliptic equations. Eurasian mathematical journal, Tome 3 (2012) no. 1, pp. 41-62. http://geodesic.mathdoc.fr/item/EMJ_2012_3_1_a3/