On selection of infinitely differentiable solutions of a class of partially hypoelliptic equations
Eurasian mathematical journal, Tome 3 (2012) no. 1, pp. 41-62.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper the existence of a constant $\kappa_0>0$ is proved such that all solutions of a class of regular partially hypoelliptic (with respect to the hyperplane $x''=(x_2,\dots,x_n)=0$ of the space $E^n$) equations $P(D)u=0$ in the strip $\Omega_\kappa=\{(x_1,x'')=(x_1,x_2,\dots,x_n)\in E^n;\, |x_1|\kappa\}$ are infinitely differentiable when $\kappa\ge\kappa_0$ and $D^\alpha u\in L_2(\Omega_\kappa)$ for all multi-indices $\alpha=(0,\alpha'')=(0,\alpha_2,\dots,\alpha_n)$ in the Newton polyhedron of the operator $P(D)\cdot{}$.
@article{EMJ_2012_3_1_a3,
     author = {H. G. Ghazaryan},
     title = {On selection of infinitely differentiable solutions of a class of partially hypoelliptic equations},
     journal = {Eurasian mathematical journal},
     pages = {41--62},
     publisher = {mathdoc},
     volume = {3},
     number = {1},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2012_3_1_a3/}
}
TY  - JOUR
AU  - H. G. Ghazaryan
TI  - On selection of infinitely differentiable solutions of a class of partially hypoelliptic equations
JO  - Eurasian mathematical journal
PY  - 2012
SP  - 41
EP  - 62
VL  - 3
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2012_3_1_a3/
LA  - en
ID  - EMJ_2012_3_1_a3
ER  - 
%0 Journal Article
%A H. G. Ghazaryan
%T On selection of infinitely differentiable solutions of a class of partially hypoelliptic equations
%J Eurasian mathematical journal
%D 2012
%P 41-62
%V 3
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2012_3_1_a3/
%G en
%F EMJ_2012_3_1_a3
H. G. Ghazaryan. On selection of infinitely differentiable solutions of a class of partially hypoelliptic equations. Eurasian mathematical journal, Tome 3 (2012) no. 1, pp. 41-62. http://geodesic.mathdoc.fr/item/EMJ_2012_3_1_a3/

[1] v. 2, John Wiley and sons, New York, 1979 | MR | Zbl | Zbl

[2] Ya.S. Bugrov, “Embedding theorems for some funtion spaces”, Proc. Steklov Inst. Math., 77, 1965, 45–64 (Russian) | MR | Zbl

[3] V.I. Burenkov, “An analogue of Hörmander's theorem on hypoellipticity for functions converging to 0 at infinity”, Proc. 7th Soviet-Czechoslovak Seminar, Yerevan, 1982, 63–67 (Russian)

[4] V.I. Burenkov, Investigation of spaces of differentiable functions defined on irregular domains, Doctor's degree thesis, Steklov Inst. Math., Moscow, 1982 (Russian)

[5] V.I. Burenkov, “Conditional hypoellipticity and Fourier multipliers in weighted $L_p$-spaces with an exponential weight”, Proc. of the Summer School “Function spaces, differential operators, nonlinear analysis” (Fridrichroda, 1993), Teubner-Texte zur Matematik, 133, B.G. Teubner, Stuttgart–Leipzig, 1993, 256–265 | DOI | MR

[6] L. Ehrenpreis, “Solutions of some problems of division. 4”, Amer. J. Math., 82 (1960), 522–588 | DOI | MR | Zbl

[7] J. Friberg, “Estimates for partially hypoelliptic differential operators”, Medd. Lunds Univ. Mat. Sem., 17 (1963) | MR | Zbl

[8] L. Gårding, B. Malgrange, “Operateurs differentiels partillement hypoelliptiques”, Math. Scand, 9 (1961), 5–21 | MR

[9] H.G. Ghazaryan, V.N. Margaryan, “On infinite differentiability of solutions of nonhomogenous almost hypoelliptic equations”, Eurasian Math. Journal, 1:1 (2010), 54–72 | MR | Zbl

[10] H.G. Chazarian, V.N. Margarian, “Essential self-adjointness of semielliptic operators”, J. Integral Eq. Math. Phys., 1:1 (1992), 67–104

[11] E.A. Gorin, “Partially hypoelliptic partial differential equations with constant coefficients”, Sib. math. Journal, 3:4 (1962), 500–526 (Russian) | MR | Zbl

[12] E.A. Gorin, “Asimptotic properties of polynomials and algebraic functions of several variables”, Uspehi Mat. Nauk, 16:1 (1961), 91–118 (Russian) | MR | Zbl

[13] L. Hörmander, “Hypoelliptic Differential operators”, Ann. Inst. Fourier (Grenoble), 11 (1961), 477–492 | DOI | MR | Zbl

[14] L. Hörmander, The Analysis of linear Partial Differential Operators. II, Springer-Verlag, 1983 | MR

[15] G.G. Kazaryan, “On almost hypoelliptic polynomials”, Doklady Ross. Acad. Nauk. Matematika, 398:6 (2004), 701–703 (Russian) | MR

[16] G.G. Kazaryan, “On a family of hypoelliptic polynomials”, Izvestija Akad. Nauk. Armjan. SSR, ser. matem., 9 (1974), 189–211 (Russian) | MR | Zbl

[17] G.G. Kazaryan, V.N. Margaryan, “On weighted bounds for functions in anizotropic Sobolev–Slobodetski spaces”, Izvestija Nat. Akad. Nauk Armenii, ser. matem., 32:6 (1997), 12–25 (Russian) | MR | Zbl

[18] B. Malgrange, “Sur un class d'operateurs differentiels hypoelliptiques”, Bull. Math. France, 85 (1957), 283–306 | MR | Zbl

[19] Journal of Contemporary Mathematical Analysis (Armenian Academy of Sciences), 43:3 (2008), 28–54 | MR

[20] Soviet Math. Dokl., 6 (1965) | MR

[21] V.P. Mikhailov, “The behavior of a class of polynomials at infinity”, Proc. Steklov Inst. Math., 91, 1967, 59–80 (Russian) | MR

[22] S.M. Nikolskii, “Proof of uniquness of the classical solution of first boundary value problem”, Izvestija AN SSSR, ser. matem., 27 (1963), 1113–1134 (Russian) | MR

[23] J. Peetre, Theoremes de regularité pour quelques classes d'operateurs differentiels, Thesis – Lund., 1959

[24] L.R. Volevich, S.G. Gindikin, The method of Newton's polihedron in the theory of PDE, Kluwer, 1992 | Zbl