A compactness lemma for convex plane sets
Eurasian mathematical journal, Tome 2 (2011) no. 3, pp. 147-149.

Voir la notice de l'article provenant de la source Math-Net.Ru

Given a closed bounded convex plane set covered by a family of open sets, we show that there is a finite dissection of the convex set into convex subsets, each of which lies within some open set of the covering.
@article{EMJ_2011_2_3_a9,
     author = {M. N. Huxley},
     title = {A compactness lemma for convex plane sets},
     journal = {Eurasian mathematical journal},
     pages = {147--149},
     publisher = {mathdoc},
     volume = {2},
     number = {3},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2011_2_3_a9/}
}
TY  - JOUR
AU  - M. N. Huxley
TI  - A compactness lemma for convex plane sets
JO  - Eurasian mathematical journal
PY  - 2011
SP  - 147
EP  - 149
VL  - 2
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2011_2_3_a9/
LA  - en
ID  - EMJ_2011_2_3_a9
ER  - 
%0 Journal Article
%A M. N. Huxley
%T A compactness lemma for convex plane sets
%J Eurasian mathematical journal
%D 2011
%P 147-149
%V 2
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2011_2_3_a9/
%G en
%F EMJ_2011_2_3_a9
M. N. Huxley. A compactness lemma for convex plane sets. Eurasian mathematical journal, Tome 2 (2011) no. 3, pp. 147-149. http://geodesic.mathdoc.fr/item/EMJ_2011_2_3_a9/

[1] H. S. Hall, F. H. Stevens, A School Geometry, Macmillan, London, 1949

[2] M. N. Huxley, J. Žunić, “The number of configurations in lattice point counting. I”, Forum Mathematicum, 22 (2010), 127–152 | DOI | MR | Zbl