On the DSM version of Newton's method
Eurasian mathematical journal, Tome 2 (2011) no. 3, pp. 89-97

Voir la notice de l'article provenant de la source Math-Net.Ru

The DSM (dynamical systems method) version of the Newton's method is for solving operator equation $F(u)=f$ in Banach spaces is discussed. If $F$ is a global homeomorphism of a Banach space $X$ onto $X$, that is continuously Fréchet differentiable, and the DSM version of the Newton's method is $\dot u=-[F'(u)]^{-1}(F(u)-f)$, $u(0)=u_0$, then it is proved that $u(t)$ exists for all $t\ge0$ and is unique, that there exists $u(\infty):=\lim_{t\to\infty}u(t)$, and that $F(u(\infty))=f$. These results are obtained for an arbitrary initial approximation $u_0$. This means that convergence of the DSM version of the Newton's method is global. The proof is simple, short, and is based on a new idea. If $F$ is not a global homeomorphism, then a similar result is obtained for $u_0$ sufficiently close to $y$, where $F(y)=f$ and $F$ is a local homeomorphism of a neighborhood of $y$ onto a neighborhood of $f$. These neighborhoods are specified.
@article{EMJ_2011_2_3_a5,
     author = {A. G. Ramm},
     title = {On the {DSM} version of {Newton's} method},
     journal = {Eurasian mathematical journal},
     pages = {89--97},
     publisher = {mathdoc},
     volume = {2},
     number = {3},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2011_2_3_a5/}
}
TY  - JOUR
AU  - A. G. Ramm
TI  - On the DSM version of Newton's method
JO  - Eurasian mathematical journal
PY  - 2011
SP  - 89
EP  - 97
VL  - 2
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2011_2_3_a5/
LA  - en
ID  - EMJ_2011_2_3_a5
ER  - 
%0 Journal Article
%A A. G. Ramm
%T On the DSM version of Newton's method
%J Eurasian mathematical journal
%D 2011
%P 89-97
%V 2
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2011_2_3_a5/
%G en
%F EMJ_2011_2_3_a5
A. G. Ramm. On the DSM version of Newton's method. Eurasian mathematical journal, Tome 2 (2011) no. 3, pp. 89-97. http://geodesic.mathdoc.fr/item/EMJ_2011_2_3_a5/