On the DSM version of Newton's method
Eurasian mathematical journal, Tome 2 (2011) no. 3, pp. 89-97.

Voir la notice de l'article provenant de la source Math-Net.Ru

The DSM (dynamical systems method) version of the Newton's method is for solving operator equation $F(u)=f$ in Banach spaces is discussed. If $F$ is a global homeomorphism of a Banach space $X$ onto $X$, that is continuously Fréchet differentiable, and the DSM version of the Newton's method is $\dot u=-[F'(u)]^{-1}(F(u)-f)$, $u(0)=u_0$, then it is proved that $u(t)$ exists for all $t\ge0$ and is unique, that there exists $u(\infty):=\lim_{t\to\infty}u(t)$, and that $F(u(\infty))=f$. These results are obtained for an arbitrary initial approximation $u_0$. This means that convergence of the DSM version of the Newton's method is global. The proof is simple, short, and is based on a new idea. If $F$ is not a global homeomorphism, then a similar result is obtained for $u_0$ sufficiently close to $y$, where $F(y)=f$ and $F$ is a local homeomorphism of a neighborhood of $y$ onto a neighborhood of $f$. These neighborhoods are specified.
@article{EMJ_2011_2_3_a5,
     author = {A. G. Ramm},
     title = {On the {DSM} version of {Newton's} method},
     journal = {Eurasian mathematical journal},
     pages = {89--97},
     publisher = {mathdoc},
     volume = {2},
     number = {3},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2011_2_3_a5/}
}
TY  - JOUR
AU  - A. G. Ramm
TI  - On the DSM version of Newton's method
JO  - Eurasian mathematical journal
PY  - 2011
SP  - 89
EP  - 97
VL  - 2
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2011_2_3_a5/
LA  - en
ID  - EMJ_2011_2_3_a5
ER  - 
%0 Journal Article
%A A. G. Ramm
%T On the DSM version of Newton's method
%J Eurasian mathematical journal
%D 2011
%P 89-97
%V 2
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2011_2_3_a5/
%G en
%F EMJ_2011_2_3_a5
A. G. Ramm. On the DSM version of Newton's method. Eurasian mathematical journal, Tome 2 (2011) no. 3, pp. 89-97. http://geodesic.mathdoc.fr/item/EMJ_2011_2_3_a5/

[1] K. Deimling, Nonlinear functional analysis, Springer-Verlag, Berlin, 1985 | MR | Zbl

[2] M. Gavurin, “Nonlinear functional equations and continuous analysis of iterative methods”, Izvestiya Vusov. Mathem., 1958, no. 5, 18–31 (in Russian) | MR | Zbl

[3] N. S. Hoang, A. G. Ramm, “The Dynamical Systems Method for solving nonlinear equations with monotone operators”, Asian Europ. Math. Journ., 3:1 (2010), 57–105 | DOI | MR | Zbl

[4] N. S. Hoang, A. G. Ramm, “Dynamical systems method for solving nonlinear equations with monotone operators”, Math. of Comput., 79:269 (2010), 239–258 | DOI | MR | Zbl

[5] N. S. Hoang, A. G. Ramm, “DSM of Newton-type for solving operator equations $F(u)=f$ with minimal smoothness assumptions on $F$”, International Journ. Comp. Sci. and Math. (IJCSM), 3:1/2 (2010), 3–55 | MR | Zbl

[6] L. Kantorovich, G. Akilov, Functional Analysis, Pergamon Press, New York, 1982 | MR | Zbl

[7] J. Ortega, W. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables, SIAM, Philadelphia, 2000 | MR | Zbl

[8] A. G. Ramm, “Dynamical systems method for solving operator equations”, Communic. Nonlinear Sci. and Numer. Simulation, 9 (2004), 383–402 | DOI | MR | Zbl

[9] A. G. Ramm, Inverse Problems, Springer, New York, 2005 | MR

[10] A. G. Ramm, Dynamical systems method for solving nonlinear operator equations, Elsevier, New York, 2007 | Zbl

[11] A. G. Ramm, “Dynamical systems method (DSM) and nonlinear problems”, Spectral Theory and Nonlinear Analysis, ed. J. Lopez-Gomez, World Scientific, Singapore, 2005, 201–228 | DOI | MR | Zbl

[12] A. G. Ramm, “A nonlinear inequality and evolution problems”, Journ. Ineq. and Special Funct. (JIASF), 1:1 (2010), 1–9 | MR

[13] A. G. Ramm, “Dynamical systems method and a homeomorphism theorem”, Amer. Math. Monthly, 113:10 (2006), 928–933 | DOI | MR | Zbl

[14] A. G. Ramm, “Asymptotic stability of solutions to abstract differential equations”, Journ. of Abstract Diff. Equations and Applications (JADEA), 1:1 (2010), 27–34 | MR | Zbl

[15] A. G. Ramm, “On the DSM Newton-type method”, J. Appl. Math. and Comp. (JAMC) | DOI | MR

[16] A. G. Ramm, N. S. Hoang, Dynamical Systems Method and Applications, Wiley-Interscience, New Jersey, 2012 (to appear) | MR | Zbl