Analysis of two-operator boundary-domain integral equations for variable-coefficient mixed BVP
Eurasian mathematical journal, Tome 2 (2011) no. 3, pp. 20-41

Voir la notice de l'article provenant de la source Math-Net.Ru

Applying the two-operator approach, the mixed (Dirichlet–Neumann) boundary value problem for a second-order scalar elliptic differential equation with variable coefficients is reduced to several systems of Boundary Domain Integral Equations, briefly BDIEs. The two-operator BDIE system equivalence to the boundary value problem, BDIE solvability and the invertibility of the boundary-domain integral operators are proved in the appropriate Sobolev spaces.
@article{EMJ_2011_2_3_a1,
     author = {T. G. Ayele and S. E. Mikhailov},
     title = {Analysis of two-operator boundary-domain integral equations for variable-coefficient mixed {BVP}},
     journal = {Eurasian mathematical journal},
     pages = {20--41},
     publisher = {mathdoc},
     volume = {2},
     number = {3},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2011_2_3_a1/}
}
TY  - JOUR
AU  - T. G. Ayele
AU  - S. E. Mikhailov
TI  - Analysis of two-operator boundary-domain integral equations for variable-coefficient mixed BVP
JO  - Eurasian mathematical journal
PY  - 2011
SP  - 20
EP  - 41
VL  - 2
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2011_2_3_a1/
LA  - en
ID  - EMJ_2011_2_3_a1
ER  - 
%0 Journal Article
%A T. G. Ayele
%A S. E. Mikhailov
%T Analysis of two-operator boundary-domain integral equations for variable-coefficient mixed BVP
%J Eurasian mathematical journal
%D 2011
%P 20-41
%V 2
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2011_2_3_a1/
%G en
%F EMJ_2011_2_3_a1
T. G. Ayele; S. E. Mikhailov. Analysis of two-operator boundary-domain integral equations for variable-coefficient mixed BVP. Eurasian mathematical journal, Tome 2 (2011) no. 3, pp. 20-41. http://geodesic.mathdoc.fr/item/EMJ_2011_2_3_a1/