Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2011_2_3_a1, author = {T. G. Ayele and S. E. Mikhailov}, title = {Analysis of two-operator boundary-domain integral equations for variable-coefficient mixed {BVP}}, journal = {Eurasian mathematical journal}, pages = {20--41}, publisher = {mathdoc}, volume = {2}, number = {3}, year = {2011}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2011_2_3_a1/} }
TY - JOUR AU - T. G. Ayele AU - S. E. Mikhailov TI - Analysis of two-operator boundary-domain integral equations for variable-coefficient mixed BVP JO - Eurasian mathematical journal PY - 2011 SP - 20 EP - 41 VL - 2 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/EMJ_2011_2_3_a1/ LA - en ID - EMJ_2011_2_3_a1 ER -
T. G. Ayele; S. E. Mikhailov. Analysis of two-operator boundary-domain integral equations for variable-coefficient mixed BVP. Eurasian mathematical journal, Tome 2 (2011) no. 3, pp. 20-41. http://geodesic.mathdoc.fr/item/EMJ_2011_2_3_a1/
[1] T. G. Ayele, S. E. Mikhailov, “Two-operator boundary-domain integral equations for a variable-coefficient BVP”, Integral Methods in Science and Engineering, v. 1, Analytic Methods, eds. C. Constanda, M. Pérez, Birkhäuser, Boston–Basel–Berlin, 2010, 29–39 | MR | Zbl
[2] O. Chakuda, S. E. Mikhailov, D. Natroshvili, “Analysis of direct boundary-domain integral equations for a mixed BVP with variable coefficent. I: Equivalence and Invertibility”, J. Integral Equat. and Appl., 21 (2009), 499–543 | DOI | MR
[3] O. Chkadua, S. E. Mikhailov, D. Natroshvili, “Analysis of segregated boundary-domain integral equations for variable-coefficient problems with cracks”, Numerical Methods for Partial Differential Equations, 27 (2011), 121–140 | DOI | MR | Zbl
[4] M. Costabel, “Boundary integral operators on Lipschiz domains: elementary results”, SIAM journal on Mathematical Analysis, 19 (1988), 613–626 | DOI | MR | Zbl
[5] P. Grisvard, Elliptic Problems in Nonsmooth Domains, Pitman, Boston–London–Melbourne, 1985 | MR | Zbl
[6] J.-L. Lions, E. Magenes, Non-Homogeneous Boundary Value Problems and Applications, v. 1, Springer, Berlin–Heidberg–New York, 1972
[7] W. McLean, Strongly Elliptic Systems and Boundary Integral Equations, Cambrige University Press, Cambrige, 2000 | MR | Zbl
[8] S. E. Mikhailov, “Localized boundary-domain integral formulations for problems with variable coefficients”, Int. J. Engineering Analysis with Boundary Elements, 26 (2002), 681–690 | DOI | Zbl
[9] S. E. Mikhailov, I. S. Nakhova, “Mesh-based numerical implementation of the localized boundary-domain integral equation method to a variable-coefficient Neumann problem”, J. Engineering Math., 51 (2005), 251–259 | DOI | MR | Zbl
[10] S. E. Mikhailov, “Analysis of extended boundary-domain integral and integro-differential equations for a mixed BVP with variable coeffecients”, Advances in Boundary Integral Methods, Proccedings of the 5th UK Conference on Boundary Integral Methods, ed. Ke Chen, University of Liverpool Publ., UK, 2005, 106–125
[11] S. E. Mikhailov, “Localized direct boundary-domain integro-differential formulations for scalar nonlinear BVPs with variable coeffecients”, J. Eng. Math., 51 (2005), 283–302 | DOI | MR | Zbl
[12] S. E. Mikhailov, “Analysis of united boundary-domain integral and integro-differential equations for a mixed BVP with variable coeffecients”, Math. Meth. Appl. Sci., 29 (2006), 715–739 | DOI | MR | Zbl
[13] S. E. Mikhailov, “Traces, extensions and co-normal derivatives for elliptic systems on Lipschitz domains”, J. Math. Analysis and Appl., 378 (2011), 324–342 | DOI | MR | Zbl
[14] C. Miranda, Partial differential equations of elliptic type, 2nd edition, Springer, Berlin–Heidelberg–New York, 1970 | MR | Zbl
[15] J. Sladek, V. Sladek, S. N. Atluri, “Local boundary integral equation (LBIE) method for solving problems of elasticity with nonhomogeneous material properties”, Computational Mechanics, 24 (2000), 456–462 | DOI | MR | Zbl
[16] J. Sladek, V. Sladek, Ch. Zhang, “Local integro-differential equations with domain elements for the numerical solution of partial differential equations with variable coefficients”, J. Eng. Math., 51 (2005), 261–282 | DOI | MR | Zbl
[17] A. E. Taigbenu, The Green element method, Kluwer, Boston, 1999
[18] T. Zhu, J.-D. Zhang, S. N. Atluri, “A local boundary integral equation (LBIE) method in computational mechanics, and a meshless discretization approach”, Computational Mechanics, 21 (1998), 223–235 | DOI | MR | Zbl
[19] T. Zhu, J.-D. Zhang, S. N. Atluri, “A meshless numerical method based on the local boundary integral equation (LBIE) to solve linear and non-linear boundary value problems”, Engineering Analysis with Boundary Elements, 23 (1999), 375–389 | DOI | Zbl