On the determinants of pentadiagonal matrices with the classical Fibonacci, generalized Fibonacci and Lucas numbers
Eurasian mathematical journal, Tome 2 (2011) no. 2, pp. 60-74.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we compute the determinants of several pentadiagonal matrices with the generalized Fibonacci, generalized Lucas numbers and the determinant of a pentadiagonal matrix with the classical Fibonacci numbers, and then we show how the classical Fibonacci numbers arise as determinants of some pentadiagonal matrices.
@article{EMJ_2011_2_2_a2,
     author = {A. \.Ipek},
     title = {On the determinants of pentadiagonal matrices with the classical {Fibonacci,} generalized {Fibonacci} and {Lucas} numbers},
     journal = {Eurasian mathematical journal},
     pages = {60--74},
     publisher = {mathdoc},
     volume = {2},
     number = {2},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2011_2_2_a2/}
}
TY  - JOUR
AU  - A. İpek
TI  - On the determinants of pentadiagonal matrices with the classical Fibonacci, generalized Fibonacci and Lucas numbers
JO  - Eurasian mathematical journal
PY  - 2011
SP  - 60
EP  - 74
VL  - 2
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2011_2_2_a2/
LA  - en
ID  - EMJ_2011_2_2_a2
ER  - 
%0 Journal Article
%A A. İpek
%T On the determinants of pentadiagonal matrices with the classical Fibonacci, generalized Fibonacci and Lucas numbers
%J Eurasian mathematical journal
%D 2011
%P 60-74
%V 2
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2011_2_2_a2/
%G en
%F EMJ_2011_2_2_a2
A. İpek. On the determinants of pentadiagonal matrices with the classical Fibonacci, generalized Fibonacci and Lucas numbers. Eurasian mathematical journal, Tome 2 (2011) no. 2, pp. 60-74. http://geodesic.mathdoc.fr/item/EMJ_2011_2_2_a2/

[1] P.-G. Becker, “$k$-regular power series and Mahler-type functional equations”, J. Number Theory, 49:3 (1994), 269–286 | DOI | MR | Zbl

[2] A. T. Benjamin, G. P. Dresden, “A combinatorial proof of Vandermonde's determinant”, Amer. Math. Monthly, 114 (2007), 338–341 | MR

[3] A. T. Benjamin, N. T. Cameron, J. J. Quinn, “Fibonacci determinants – a combinatorial approach”, Fibonacci Quart., 45 (2007), 39–55 | MR | Zbl

[4] A. T. Benjamin, N. T. Cameron, J. J. Quinn, C. R.Yerger, Catalan determinants – a combinatorial approach, Applications of Fibonacci Numbers, 11, ed. William Webb, Kluwer Academic Publishers, 2008

[5] M. Bicknell-Johnson, C. Spears, “Classes of identities for the generalized Fibonacci numbers $G_n=G_{n-1}+G_{n-c}$ from matrices with constant valued determinants”, Fibonacci Quart., 34 (1996), 121–128 | MR | Zbl

[6] A. I. Borevich, I. R. Shafarevich, Number theory, Academic Press, New York, 1966 | MR | Zbl

[7] R. Bowen, O. E. Lanford, “Zeta functions of restrictions of the shift transformation”, Global Analysis (Berkeley, Calif., 1968), Proc. Sympos. Pure Math., 14, Amer. Math. Soc., Providence, R.I., 1970, 43–49 | DOI | MR

[8] G. E. P. Box, G. M. Jenkins, Times series analysis. Forecasting and control, HoldenDay, San Francisco, Calif., 1970 | MR | Zbl

[9] N. D. Cahill, D. Narayan, “Fibonacci and Lucas numbers as tridiagonal matrix determinants”, Fibonacci Quart., 42 (2004), 216–221 | MR | Zbl

[10] N. D. Cahill, J. R. D'Errico, D. A. Narayan, J. Y. Narayan, “Fibonacci determinants”, College Math. J., 33 (2002), 221–225 | DOI | Zbl

[11] N. D. Cahill, J. R. D'Ericco, J. P. Spence, “Complex factorizations of the Fibonacci and Lucas numbers”, Fibonacci Quarterly, 41 (2003), 13–19 | MR | Zbl

[12] H. Civciv, “A note on the determinant of five-diagonal matrices with Fibonacci numbers”, Int. J. Contemp. Math. Sciences, 3:9 (2008), 419–424 | MR | Zbl

[13] J. Denef, “The rationality of the Poincare series associated to the $p$-adic points on a variety”, Invent. Math., 77:1 (1984), 1–23 | DOI | MR | Zbl

[14] J. Denef, L. Lipshitz, T. Pheidas, J. Van Geel, “Hilbert's tenth problem: relations with arithmetic and algebraic geometry”, Papers from the workshop held at Ghent University (Ghent, November 2–5, 1999), Contemporary Mathematics, 270, American Mathematical Society, Providence, RI, 2000 | DOI | MR | Zbl

[15] N. P. F. Du Sautoy, “Finitely generated groups, $p$-adic analytic groups and Poincare series”, Ann. of Math., 137:3 (1993), 639–670 | DOI | MR | Zbl

[16] N. P. F. Du Sautoy, “Counting congruence subgroups in arithmetic subgroups”, Bull. London Math. Soc., 26:3 (1994), 255–262 | DOI | MR | Zbl

[17] M. S. El Naschie, “Modular groups in Cantorian $E(1)$ high-energy physics”, Chaos, Solitons Fractals, 16:2 (2003), 353–366 | DOI | Zbl

[18] M. S. El Naschie, “Topological defects in the symmetric vacuum, anomalous positron production and the gravitational instanton”, Inti. J. Mod. Phys., 13:4 (2004), 835–849 | DOI

[19] M. S. El Naschie, “Experimental and theoretical arguments for the number and mass of the Higgs particles”, Chaos, Solitons Fractals, 23:4 (2005), 1091–1098 | DOI | Zbl

[20] M. S. El Naschie, “The Golden Mean in quantum geometry, Knot theory and related topics”, Chaos, Solitons Fractals, 10:8 (1999), 1303–1307 | DOI | MR | Zbl

[21] M. S. El Naschie, “Notes on superstrings and the infinite sums of Fibonacci and Lucas numbers”, Chaos, Solitons Fractals, 12:10 (2001), 1937–1940 | DOI | MR | Zbl

[22] M. S. El Naschie, “Non-Euclidean spacetime structure and the two-slit experiment”, Chaos, Solitons Fractals, 26:1 (2005), 1–6 | DOI | Zbl

[23] M. S. El Naschie, “Stability analysis of the two-slit experiment with quantum particles”, Chaos, Solitons Fractals, 26:2 (2005), 291–294 | DOI | Zbl

[24] M. S. El Naschie, “Fuzzy dodecahedron topology and $E$-infinity spacetime as a model for quantum physics”, Chaos, Solitons Fractals, 30:5 (2006), 1025–1033 | DOI

[25] M. S. El Naschie, “The Fibonacci code behind super strings and $P$-Branes. An answer to M. Kakus fundamental question”, Chaos, Solitons Fractals, 31:3 (2007), 537–547 | DOI

[26] M. S. El Naschie, “Hilbert space, Poincaredodecahedron and golden mean transfiniteness”, Chaos, Solitons Fractals, 31:4 (2007), 787–793 | DOI

[27] M. S. El Naschie, “More on the Fibonacci sequence and Hessenberg matrices”, Integers, 6 (2006), # A32 | MR

[28] S. Falcón, A. Plaza, “On the Fibonacci $k$-numbers”, Chaos, Solitons Fractals, 32:5 (2007), 1615–1624 | DOI | MR | Zbl

[29] S. Falcón, A. Plaza, “The $k$-Fibonacci sequence and the Pascal 2-triangle”, Chaos, Solitons Fractals, 33:1 (2007), 38–49 | DOI | MR | Zbl

[30] S. Falcón, A. Plaza, “The $k$-Fibonacci hyperbolic functions”, Chaos, Solitons Fractals, 38:2 (2008), 409–420 | DOI | MR | Zbl

[31] A. Hinkkanen, “Zeta functions of rational functions are rational”, Ann. Acad. Sci. Fenn. Ser. AI Math., 19:1 (1994), 3–10 | MR | Zbl

[32] V. E. Hoggat, Fibonacci and Lucas numbers, Houghton, Palo Alto, CA, 1969 | Zbl

[33] T. Koshy, Fibonacci and Lucas Numbers with Applications, John Wiley Sons, New York, 2001 | MR

[34] H. Kwong, “Two determinants with Fibonacci and Lucas entries”, Appl. Math. and Comp., 194 (2007), 568–571 | DOI | MR | Zbl

[35] R. Lidl, H. Niederreiter, Finite fields, Advanced Book Program, Addison-Wesley Publishing Company, Reading, MA, 1983 | MR | Zbl

[36] L. Lipshitz, A. J. van der Poorten, “Rational functions, diagonals, automata and arithmetic”, Number theory (Banff, AB, 1988), de Gruyter, Berlin, 1990, 339–358 | MR

[37] Br. J. Mahon, “Elementary Problem B-1016”, Fibonacci Quart., 44 (2006), 182–193

[38] A. Manning, “Axiom A diffeomorphisms have rational zeta functions”, Bull. London Math. Soc., 3 (1971), 215–220 | DOI | MR | Zbl

[39] O. Martin, A. M. Odlyzko, S. Wolfram, “Algebraic properties of cellular automata”, Comm. Math. Phys., 93:2 (1984), 219–258 | DOI | MR | Zbl

[40] Y. V. Matiyasevich, Hilbert's tenth problem, MIT Press, Cambridge, MA, 1993 | MR | Zbl

[41] H. Matsumura, Commutative ring theory, Cambridge University Press, Cambridge, 1989 | MR | Zbl

[42] M. D. Mcllroy, “Number theory in computer graphics”, The unreasonable effectiveness of number theory (Orono, ME, 1991), Amer. Math. Soc., Providence, RI, 1992, 105–121 | DOI | MR

[43] H. Niederreiter, “Recent trends in random number and random vector generation”, Ann. Oper. Res., 31:1–4 (1991), 323–345 | DOI | MR | Zbl

[44] H. Niederreiter, Random number generation and quasi-Monte Carlo methods, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1992 | MR | Zbl

[45] H. Niederreiter, “New developments in uniform pseudorandom number and vector generation”, Monte Carlo and quasi-Monte Carlo methods in scientific computing (Las Vegas, NV, 1994), Springer, New York, 1995, 87–120 | DOI | MR | Zbl

[46] T. Pheidas, “An effort to prove that the existential theory of $\mathbb Q$ is undecidable”, Hilbert's tenth problem: relations with arithmetic and algebraic geometry, Contemp. Math., 270, 2000, 237–252 | DOI | MR | Zbl

[47] C. Pomerance, J. M. Robson, J. Shallit, “Automaticity. II. Descriptional complexity in the unary case”, Theoret. Comput. Sci., 180:1–2 (1997), 181–201 | DOI | MR | Zbl

[48] H. P. Schlickewei, “Lower bounds for heights on finitely generated groups”, Monatsh. Math., 123:2 (1997), 171–178 | DOI | MR | Zbl

[49] T. N. Shorey, “Exponential Diophantine equations involving products of consecutive integers and related equations”, Number theory, Birkhauser, Basel, 2000, 463–495 | DOI | MR | Zbl

[50] T. N. Shorey, R. Tijdeman, Exponential Diophantine equations, Cambridge University Press, Cambridge, 1986 | MR | Zbl

[51] V. W. Spinadel, “The metallic means and design”, Nexus II: Architecture and Mathematics, ed. Kim Williams, Edizioni dell'Erba, Fucecchio, Florence, 1998, 143–157 | MR

[52] V. W. Spinadel, “The metallic means family and forbidden symmetries”, Int. Math. J., 2:3 (2002), 279–288 | MR | Zbl

[53] A. P. Stakhov, I. S. Tkachenko, “Hyperbolic Fibonacci trigonometry”, Rep. Ukr. Acad. Sci., 208:7 (1993), 9–14 (in Russian) | MR

[54] A. P. Stakhov, Hyperbolic Fibonacci and Lucas functions: a new mathematics for the living nature, ITI, Vinnitsa, 2003

[55] A. Stakhov, B. Rozin, “On a new class of hyperbolic function”, Chaos, Solitons Fractals, 23 (2004), 379–389 | DOI | MR

[56] A. Stakhov, B. Rozin, “The Golden Shofar”, Chaos, Solitons Fractals, 26:3 (2005), 677–684 | DOI | MR | Zbl

[57] G. Strang, Introduction to linear algebra, Wellesley-Cambridge Press, Welleslay, MA, 1998 | Zbl

[58] S. Tezuka, Uniform random numbers, Kluwer, Dordrecht, 1996

[59] R. Tijdeman, “Exponential Diophantine equations 1986–1996”, Number theory, de Gruyter, Berlin, 1998, 523–539 | MR | Zbl

[60] R. Tijdeman, “Some applications of Diophantine approximation”, Number Theory for the Millennium, v. III, ed. A. K. Peters, Natick, MA, 2002, 261–284 | MR | Zbl

[61] M. A. Vsemirnov, “Diophantine representations of linear recurrent sequences. I”, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 227, 1995, 52–60 | MR | Zbl

[62] M. A. Vsemirnov, “Diophantine representations of linear recurrent sequences. II”, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 241, 1997, 5–29 | MR | Zbl

[63] W. Wang, T. Wang, “Identities via Bell matrix and Fibonacci matrix”, Discrete Appl. Math., 156:14 (2008), 2793–2803 | DOI | MR | Zbl

[64] W. A. Webb, E. A. Parberry, “Divisibility properties of Fibonacci polynomials”, Fibonacci Quart., 7 (1969), 457–463 | MR | Zbl