A new weighted Friedrichs-type inequality for a~perforated domain with a~sharp constant
Eurasian mathematical journal, Tome 2 (2011) no. 1, pp. 81-103

Voir la notice de l'article provenant de la source Math-Net.Ru

We derive a new three-dimensional Hardy-type inequality for a cube for the class of functions from the Sobolev space $H^1$ having zero trace on small holes distributed periodically along the boundary. The proof is based on a careful analysis of the asymptotic expansion of the first eigenvalue of a related spectral problem and the best constant of the corresponding Friedrichs-type inequality.
@article{EMJ_2011_2_1_a3,
     author = {G. A. Chechkin and Yu. O. Koroleva and L.-E. Persson and P. Wall},
     title = {A new weighted {Friedrichs-type} inequality for a~perforated domain with a~sharp constant},
     journal = {Eurasian mathematical journal},
     pages = {81--103},
     publisher = {mathdoc},
     volume = {2},
     number = {1},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2011_2_1_a3/}
}
TY  - JOUR
AU  - G. A. Chechkin
AU  - Yu. O. Koroleva
AU  - L.-E. Persson
AU  - P. Wall
TI  - A new weighted Friedrichs-type inequality for a~perforated domain with a~sharp constant
JO  - Eurasian mathematical journal
PY  - 2011
SP  - 81
EP  - 103
VL  - 2
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2011_2_1_a3/
LA  - en
ID  - EMJ_2011_2_1_a3
ER  - 
%0 Journal Article
%A G. A. Chechkin
%A Yu. O. Koroleva
%A L.-E. Persson
%A P. Wall
%T A new weighted Friedrichs-type inequality for a~perforated domain with a~sharp constant
%J Eurasian mathematical journal
%D 2011
%P 81-103
%V 2
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2011_2_1_a3/
%G en
%F EMJ_2011_2_1_a3
G. A. Chechkin; Yu. O. Koroleva; L.-E. Persson; P. Wall. A new weighted Friedrichs-type inequality for a~perforated domain with a~sharp constant. Eurasian mathematical journal, Tome 2 (2011) no. 1, pp. 81-103. http://geodesic.mathdoc.fr/item/EMJ_2011_2_1_a3/