A new weighted Friedrichs-type inequality for a~perforated domain with a~sharp constant
Eurasian mathematical journal, Tome 2 (2011) no. 1, pp. 81-103.

Voir la notice de l'article provenant de la source Math-Net.Ru

We derive a new three-dimensional Hardy-type inequality for a cube for the class of functions from the Sobolev space $H^1$ having zero trace on small holes distributed periodically along the boundary. The proof is based on a careful analysis of the asymptotic expansion of the first eigenvalue of a related spectral problem and the best constant of the corresponding Friedrichs-type inequality.
@article{EMJ_2011_2_1_a3,
     author = {G. A. Chechkin and Yu. O. Koroleva and L.-E. Persson and P. Wall},
     title = {A new weighted {Friedrichs-type} inequality for a~perforated domain with a~sharp constant},
     journal = {Eurasian mathematical journal},
     pages = {81--103},
     publisher = {mathdoc},
     volume = {2},
     number = {1},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2011_2_1_a3/}
}
TY  - JOUR
AU  - G. A. Chechkin
AU  - Yu. O. Koroleva
AU  - L.-E. Persson
AU  - P. Wall
TI  - A new weighted Friedrichs-type inequality for a~perforated domain with a~sharp constant
JO  - Eurasian mathematical journal
PY  - 2011
SP  - 81
EP  - 103
VL  - 2
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2011_2_1_a3/
LA  - en
ID  - EMJ_2011_2_1_a3
ER  - 
%0 Journal Article
%A G. A. Chechkin
%A Yu. O. Koroleva
%A L.-E. Persson
%A P. Wall
%T A new weighted Friedrichs-type inequality for a~perforated domain with a~sharp constant
%J Eurasian mathematical journal
%D 2011
%P 81-103
%V 2
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2011_2_1_a3/
%G en
%F EMJ_2011_2_1_a3
G. A. Chechkin; Yu. O. Koroleva; L.-E. Persson; P. Wall. A new weighted Friedrichs-type inequality for a~perforated domain with a~sharp constant. Eurasian mathematical journal, Tome 2 (2011) no. 1, pp. 81-103. http://geodesic.mathdoc.fr/item/EMJ_2011_2_1_a3/

[1] A. G. Belyaev, On singular perturbations of boundary-value problems, PhD Thesis, Moscow State University, Moscow, 1990 (Russian)

[2] M. Briane, “Homogenization of a nonperiodic material”, Journal de Math. Pures et Appl., 73 (1994), 47–66 | MR | Zbl

[3] M. Briane, A. Damlamian, P. Donato, “$H$-convergence in perforated domains”, Nonlinear Partial Differential Equations and Their Applications, Collége de France Seminar, v. 13, Pitman Research Notes in Mathematics, 391, eds. D. Cioranescu, J.-L. Lions, Longman, New York, 1998, 62–100 | MR | Zbl

[4] Izv. Math., 69:4 (2005), 805–846 | DOI | DOI | MR | Zbl

[5] G. A. Chechkin, Yu. O. Koroleva, L.-E. Persson, “On the precise asymptotics of the constant in the Friedrich's inequality for functions, vanishing on the part of the boundary with microinhomogeneous structure”, J. Inequal. Appl., 2007 (2007), Article ID 34138, 13 pp. | DOI | MR | Zbl

[6] G. A. Chechkin, Yu. O. Koroleva, A. Meidell, L.-E. Persson, “On the Friedrichs inequality in a domain perforated nonperiodically along the boundary. Homogenization procedure. Asymptotics in parabolic problems”, Russ. J. Math. Phys., 16:1 (2009), 1–16 | DOI | MR | Zbl

[7] G. A. Chechkin, T. P. Chechkina, C. D'Apice, U. De Maio, “Homogenization in domains randomly perforated along the boundary”, Discrete and Continuous Dynamical Systems. Ser. B, 12:4 (2009), 713–730 | DOI | MR | Zbl

[8] G. A. Chechkin, R. R. Gadyl'shin, Yu. O. Koroleva, “On asymptotics of the first eigenvalue for Laplacian in domain perforated along the boundary”, Diff. Equ., 2011 (to appear) | MR

[9] Diff. Equat., 46:5 (2010), 667–680 | DOI | MR | Zbl

[10] Dokl. Math., 81:3 (2010), 337–341 | DOI | MR | Zbl

[11] D. Chenais, M. Mascarenhas, L. Trabucho, “Optimization of quasi-periodical perforated structures”, Homogenization and Applications to Material Sciences (Nice, 1995), Gakuto Int. Series, Math. Sciences and Applications, 9, eds. D. Cioranescu, A. Damlamian, P. Donato, 1997, 113–122 | MR

[12] A. Damlamian, P. Donato, “Which sequence of holes are admissible for periodic homogenization with Neumann boundary condition?”, ESAIM: Control, Optimization ad Calculus of Variations, 8:6 (2002), 555–585 | DOI | MR | Zbl

[13] P. Donato, C. Picard, “Convergence of Dirichlet problems for monotone operators in a class of porous media”, Ric. Mat., 49 (2000), 245–268 | MR | Zbl

[14] D. Gilbarg, N. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, New York, 1983 | MR | Zbl

[15] P. Hajlasz, “Pointwise Hardy inequalities”, Proc. Amer. Math. Soc., 127 (1999), 417–423 | DOI | MR | Zbl

[16] G. H. Hardy, J. E. Littlewood, G. Pólya, Inequalities, Reprint of the 1952 edition, ed., Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1988 | MR | Zbl

[17] A. M. Il'in, Matching of asymptotic expansions of solutions of boundary value problems, Translations of Mathematical Monographs, 102, American Mathematical Society, Providence, RI, 1992 | MR | Zbl

[18] I. S. Kac, M. G. Krein, “Criteria for discreteness of the spectrum of a singular string”, Izv. Vyss. Uchebn. Zaved. Mat., 1958, no. 2, 136–153 (Russian) | MR

[19] V. Kokilashvili, A. Meskhi, L.-E. Persson, Weighted norm inequalities for integral transforms with product kernels, Nova Science Publishers. Inc., Springer, New York, 2009 | MR

[20] Yu. O. Koroleva, On the Friedrichs inequality in a cube perforated periodically along the part of the boundary. Homogenization procedure, Research report No 2, Luleå University of Technology, 2009, 25 pp.

[21] Yu. O. Koroleva, On the weighted Hardy type inequality in a fixed domain for functions vanishing on the part of the boundary, Research report No 1, Luleå Univesity of Technology, 2010, 13 pp. | MR

[22] Yu. O. Koroleva, “On the Friedrichs inequality in a three dimensional domain aperiodically perforated along a part of the boundary”, Russ. Math. Surv., 65:4 (2010), 199–200 | DOI | MR | Zbl

[23] Yu. O. Koroleva, Integral inequalities of Hardy and Friedrichs types with applications to homogenization theory, PhD Thesis, Department of Mathematics, Luleå University of Technology, Luleå, 2010

[24] A. Kufner, Weighted Sobolev Spaces, John Wiley and Sons, New York, 1985 | MR | Zbl

[25] A. Kufner, L. Maligranda, L.-E. Persson, The Hardy inequality. About its history and some related results, Vydavetelsky Servis Publishing House, Pilsen, 2007 | MR | Zbl

[26] A. Kufner, L.-E. Persson, Weighted Inequalities of Hardy Type, World Scientific, New Jersey–London–Singapore–Hong Kong, 2003 | MR | Zbl

[27] L. Mascarenhas, D. Polisevski, “The warping, the torsion and the Neumann problem in a quasi-periodically perforated domain”, Mathematical Modelling and Nimerical Analysis, 28 (1994), 37–57 | MR | Zbl

[28] V. G. Maz'ja, Sobolev spaces, Springer Series in Soviet Mathematics, Springer-Verlag, Berlin, 1985 | MR | Zbl

[29] S. A. Nazarov, “Junctions of singularly degenerating domains with different limit dimensions, I”, J. Math. Sci., 80:5 (1996), 1989–2034 | DOI | MR | Zbl

[30] J. Nečas, “Sur une méthode pour résourde les équations aux dérivées partielle du type elliptique, voisine de la variationelle”, Ann. Scuola Norm. Sup. Pisa, 16 (1962), 305–362 | MR

[31] B. Opic, A. Kufner, Hardy-Type Inequalities, Longman, Harlow, 1990 | MR | Zbl

[32] W. Ziemer, Weakly differentiable functions, Graduate Texts in Mathematics, 120, Springer-Verlag, New York, 1989 | DOI | MR | Zbl

[33] A. Wannebo, “Hardy inequalities and imbedding in domains generalizing $C^{0,\lambda}$ domains”, Proc. Amer. Math. Soc., 122 (1994), 1181–1190 | MR | Zbl