Sobolev's embedding theorem for anisotropically irregular domains
Eurasian mathematical journal, Tome 2 (2011) no. 1, pp. 32-51

Voir la notice de l'article provenant de la source Math-Net.Ru

We establish a Sobolev-type embedding theorem, namely, an embedding of the Sobolev space $W_p^s(G)$ in the Lebesgue space $L_q(G)$, for anisotropically irregular domains $G\subset\mathbb R^n$ of various classes.
@article{EMJ_2011_2_1_a1,
     author = {O. V. Besov},
     title = {Sobolev's embedding theorem for anisotropically irregular domains},
     journal = {Eurasian mathematical journal},
     pages = {32--51},
     publisher = {mathdoc},
     volume = {2},
     number = {1},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2011_2_1_a1/}
}
TY  - JOUR
AU  - O. V. Besov
TI  - Sobolev's embedding theorem for anisotropically irregular domains
JO  - Eurasian mathematical journal
PY  - 2011
SP  - 32
EP  - 51
VL  - 2
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2011_2_1_a1/
LA  - en
ID  - EMJ_2011_2_1_a1
ER  - 
%0 Journal Article
%A O. V. Besov
%T Sobolev's embedding theorem for anisotropically irregular domains
%J Eurasian mathematical journal
%D 2011
%P 32-51
%V 2
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2011_2_1_a1/
%G en
%F EMJ_2011_2_1_a1
O. V. Besov. Sobolev's embedding theorem for anisotropically irregular domains. Eurasian mathematical journal, Tome 2 (2011) no. 1, pp. 32-51. http://geodesic.mathdoc.fr/item/EMJ_2011_2_1_a1/