Sobolev's embedding theorem for anisotropically irregular domains
Eurasian mathematical journal, Tome 2 (2011) no. 1, pp. 32-51.

Voir la notice de l'article provenant de la source Math-Net.Ru

We establish a Sobolev-type embedding theorem, namely, an embedding of the Sobolev space $W_p^s(G)$ in the Lebesgue space $L_q(G)$, for anisotropically irregular domains $G\subset\mathbb R^n$ of various classes.
@article{EMJ_2011_2_1_a1,
     author = {O. V. Besov},
     title = {Sobolev's embedding theorem for anisotropically irregular domains},
     journal = {Eurasian mathematical journal},
     pages = {32--51},
     publisher = {mathdoc},
     volume = {2},
     number = {1},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2011_2_1_a1/}
}
TY  - JOUR
AU  - O. V. Besov
TI  - Sobolev's embedding theorem for anisotropically irregular domains
JO  - Eurasian mathematical journal
PY  - 2011
SP  - 32
EP  - 51
VL  - 2
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2011_2_1_a1/
LA  - en
ID  - EMJ_2011_2_1_a1
ER  - 
%0 Journal Article
%A O. V. Besov
%T Sobolev's embedding theorem for anisotropically irregular domains
%J Eurasian mathematical journal
%D 2011
%P 32-51
%V 2
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2011_2_1_a1/
%G en
%F EMJ_2011_2_1_a1
O. V. Besov. Sobolev's embedding theorem for anisotropically irregular domains. Eurasian mathematical journal, Tome 2 (2011) no. 1, pp. 32-51. http://geodesic.mathdoc.fr/item/EMJ_2011_2_1_a1/

[1] O. V. Besov, “Embedding of spaces of differentiable functions of variable smoothness”, Proc. Steklov Inst. Math., 214, 1996, 19–53 | MR | Zbl

[2] O. V. Besov, “Sobolev's embedding theorem for a domain with irregular boundary”, Sb. Math., 192:3 (2001), 323–346 | DOI | MR | Zbl

[3] O. V. Besov, “Integral estimates for differentiable functions on irregular domains”, Sb. Math., 201:12 (2010), 1777–1790 | DOI | Zbl

[4] O. V. Besov, V. P. Il'in, S. M. Nikol'skii, Integral representations of functions and imbedding theorems, v. 1, V. H. Winston and Sons, Washington, DC, 1978 ; v. 2, J. Wiley and Sons, New York, 1979 | Zbl | Zbl

[5] M. A. Gabidzashvili, “Weighted inequalities for anisotropic potentials”, Trudy Tbil. Mat. Inst., 82 (1986), 25–36 (Russian) | MR | Zbl

[6] V. M. Gol'dshtein, Yu. G. Reshetnyak, Introduction to the theory of functions with generalized derivatives and quasiconformal mappings, Nauka, Moscow, 1983 (Russian) | MR

[7] M. de Guzmán, Differentiation of integrals in $\mathbb R^n$, Springer, Berlin, 1975 | MR | Zbl

[8] T. Kilpeläinen, J. Malý, “Sobolev inequalities on sets with irregular boundaries”, Z. Anal. Anwend., 19:2 (2000), 369–380 | DOI | MR | Zbl

[9] V. M. Kokilashvili, M. A. Gabidzashvili, “On weighted inequalities for anisotropic potentials and maximal functions”, Sov. Math. Dokl., 31:3 (1985), 583–585 | MR | Zbl

[10] D. A. Labutin, “Embedding of Sobolev Spaces on Hölder Domains”, Proc. Steklov Inst. Math., 227, 1999, 163–172 | MR | Zbl

[11] D. A. Labutin, “Sharpness of Sobolev inequalities for a class of irregular domains”, Proc. Steklov Inst. Math., 232, 2001, 211–215 | MR | Zbl

[12] V. G. Maz'ya, Sobolev spaces, Springer, Berlin, 1985 | MR | Zbl

[13] Algebra Anal., 18:4 (2006), 95–126 | DOI | MR | Zbl

[14] Yu. G. Reshetnyak, “Integral representation of differentiable functions in domains with nonsmooth boundary”, Siberian Math. J., 21:6 (1981), 883–839 | DOI | MR

[15] S. L. Sobolev, Some applications of functional analysis in mathematical physics, Amer. Math. Soc., Providence, RI, 1991 | MR | Zbl

[16] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Univ. Press, Princeton, 1970 | MR

[17] B. V. Trushin, “Sobolev embedding theorems for a class of anisotropic irregular domain”, Proc. Steklov Inst. Math., 260, 2008, 287–309 | DOI | MR | Zbl

[18] B. V. Trushin, “Continuity of embeddings of weighted Sobolev spaces in Lebesgue spaces on anisotropically irregular domains”, Proc. Steklov Inst. Math., 269, 2010, 265–283 | DOI | MR | Zbl